
Towards Socio- and Resource-Aware Data
Replication in User-Centric Networking

Fabian Hartmann and Ingmar Baumgart
Institute of Telematics

Karlsruhe Institute of Technology
Karlsruhe, Germany

Abstract—Recently, there has been a lot of research on de-
centralized social networks motivated by privacy concerns with
centralized systems. However, an open challenge with decentral-
ized systems is the actual data replication and retrieval among
the participating devices. We argue this aspect can be greatly
improved in terms of efficiency by taking social relationships,
user behavior and locality into account. User-centric networking
is a paradigm which includes the users’ own devices – from
smartphones to highly available personal clouds – and targets
at a socio-aware data storage, based on the users’ behavior and
their devices’ availability. In this paper, we introduce the concept
of a Decision Engine that chooses the replication devices based on
multi-dimensional input parameters, from momentary conditions
to long-time learned user behavior and social relationships.

I. INTRODUCTION

Besides pure information retrieval, personal user-to-user
communication belongs to the most important applications of
the Internet today. Even though applications like email and
instant messaging exist for decades, service providers like
Facebook or Google now offer popular comprehensive com-
munication services in the form of Online Social Networks.
The same applies to easy-to-use file sharing solutions for small
private groups like Dropbox. Usually, these services use a
client/server architecture and do not feature a decentralized,
federated architecture. This brings three major drawbacks for
the user:

• First, privacy concerns exist as large amounts of sensi-
tive data are stored centrally on one provider’s servers,
resulting in a loss of control for the user.

• Second, Internet access is always required, even if both
communication partners are in the same local network
or in geographical vicinity to each other. This imposes
unnecessary obstacles to easy direct communication (e.g.
when traveling by train without free WiFi access).

• Third, even if mobile Internet access is available, mobile
data traffic is still expensive and a growing challenge for
providers which pass increasing costs down to their cus-
tomers. Depending on the data size and access network,
data exchange might be unacceptable in certain situations.

A recent approach to tackle these problems is a communica-
tion paradigm we call user-centric networking: As the name
implies, we define not devices, but the users themselves as
communication parties. We assume that each user possesses
one or several (mobile or stationary) devices which are pow-
erful enough to provide services in a peer-to-peer manner
without depending on servers in the Internet.

Privacy can be enforced to different degrees in such a
system, depending on the structure of the peer-to-peer network.
In a KBR/DHT network [1], a node which is responsible for
popular data item can monitor metadata like access frequencies
from other nodes, even if the data item itself is encrypted. For
example, if two co-workers edit a document in collaboration,
their devices concurrent accesses (from 9 to 5 on Mondays to
Fridays only) might reveal a social relationship between the
devices’ owners.

A set of users can prevent metadata leaks if exclusively
devices under these users control communicate end-to-end in
regard to a data item that is only meant for these users. We
define this communication paradigm as self-sufficient. Typi-
cally the amount and types of such devices differ from user to
user, ranging from smartphones to highly available personal
servers. This has a strong impact on device availability and
heterogeneity, yet all data storage and distribution have to be
realized by these devices only.

With the three mentioned drawbacks in mind, we therefore
need to decide on which devices the data should be replicated
and when is the best moment for doing so. In order to make
these decisions towards a satisfying user experience, we need
to take the users’ behavior in multiple terms like mobility,
application and device usage and social context into account.
Self-sufficient communication with its additional constraints
relies even more on suitable decisions.

In this paper, we introduce the required mechanisms that
map multi-dimensional input parameters given by the users’
behavior onto replication decisions.

II. CHALLENGES IN USER-CENTRIC NETWORKING

In this section we present our view on the challenges in
user-centric networking (UCN). The basic goal in user-centric
networking is the data exchange, especially the storage and
retrieval of persistent data items, between users that know and
trust each other via their very own devices. This gives us three
main aspects we have to cover:

• Availability
• Resource conservation
• Privacy

A. Availability and resource conversation

Different devices from a smartphone to a highly available
and well-connected personal cloud server can be involved in



each user’s resource pool. Each of them has different demands
in regard to availability, costs and energy management.

Based on the information which defines the target user
group, the question that remains is when and to what devices
the data items should be replicated. This is the main problem
we regard in this paper.

To some extent this question is similar to the problem in
opportunistic networking, since device connectivity can be
limited due to user mobility. However, since we focus on
persistent data retrieval and long time storage, the challenges
are different. Furthermore, classic opportunistic networking
relies on liberal use of emerging forwarding links, while self-
sufficiency enforces hard constrains in this regard.

B. Privacy

There is a trade-off between privacy and availability which
has to be defined per use-case in UCN. The resulting con-
straints define the set of possible replication choices. We
identify four degrees of privacy in the UCN context, with
degrading privacy levels and increasing opportunities for avail-
ability:

• Publisher-to-subscriber: A publisher device communi-
cates directly with all subscriber devices. This way,
no subscriber learns about other subscribers and cannot
deduce if and which other users are recipients. This also
applies to other devices in the overlay network.

• Subscriber-to-subscriber: Subscribers are informed about
other subscribers. This equals to a meeting of a closed
group and gives us a lower level of privacy. Since the pub-
lished information stays inside the subscriber group, we
also define this scheme as self-sufficient. The advantage
over the publisher-to-subscriber scheme is the possibility
that devices of different subscribed users can distribute
and store the data item among them as well, hence relieve
the original publisher device and provide a better level of
availability.

• Contact-to-subscriber: Devices of mutual contacts be-
tween a publisher and a subscriber help to distribute
and store a data item, even if they are not subscribers.
This breaks our definition of self-sufficiency, but further
increases the opportunities for distribution and storage.
Given that we trust a contact more than an unknown user,
such a scheme can still provide an acceptable level of
privacy.

• Any-to-subscriber: All devices on the overlay network
can be used to distribute and store a data item. This
enables well-defined replication schemes, such as in a
KBR/DHT network, but gives us the lowest level of
privacy and enables metadata leaks as described earlier.

Note that a contact-to-subscriber scheme assumes that a user
fully trusts all his contacts. In a closed user group where
all participants know each other, an attacker might be even
more interested in communications patterns than a random
attacker from a large, mostly unknown user group, for example
to verify gossip behind one’s back or incriminate a cheating
spouse.

Fig. 1: Architecture overview

III. PUBLISH/SUBSCRIBE FOR
USER-CENTRIC NETWORKING

A communication service for UCN should support the
dissemination and distributed storage of data among users’
devices. It should fulfill the following requirements:

• Multiple devices per user: In UCN users should have
ubiquitous access to their data independent of the device
they are currently using (e.g. desktop computer, laptop or
smartphone).

• Offline-delivery Due to user mobility and offline devices
we cannot assume permanent connectivity between the
sender and all potential receivers of a message. Therefore
we should store data on intermediate (trusted) nodes to
support delivery as soon as a device gets available again.

• Broad range of application: The communication ser-
vice should fulfill the requirements for various UCN
applications (e.g. sharing of documents, profile, instant
messaging, gaming).

• Privacy: Personal data should only be stored on trusted
devices.

We argue that that publish/subscribe paradigm is well suited
for UCN, since it

• supports one-to-many communication
• is device-agnostic
• supports one time delivery as well as permanent dis-

tributed storage
• is feasible, because the number of subscriber is limited

in UCN1.
Such a publish/subscribe service could be provided by a

middleware running on each device but for performance and
security reasons the direct integration into the network stack
could also be considered. We presented an example for such
a user-centric middleware in our previous work [2].

Figure 1 shows the architecture layout which is described
in the following paragraphs.

A. Addressing

The primary target for data in UCN is a user and not a
specific device. Therefore all topics have the form app@uid.

1A typical user in an online social networks has about 100 social contacts
on average.



uid is the user id of the user owning the topic and app is the
name of an application.

Depending on the application, either all devices of a user or
devices of his social contacts are subscribed to a topic. E.g.
for instant messaging Bob publishes an instant message to the
topic im@uidalice and all of Alice’s devices are subscribed
to this topic. When Bob wants to receive Alice’s latest photo
albums, he subscribes to photos@uidalice .

B. Decoupled retrieving

According to predicted user behavior (see section IV) and
currently available device resources, such as battery level and
connectivity, the Decision Engine on a receiving device might
decide to delay the data transfer. Therefore, we decouple the
actual transfer of a data item from the notification about its
creation / update. Hence, the signaling protocol requires an
additional message which we assume small in size, so it can
be distributed fast without further negotiation, as opposed to
e.g. a movie which is several gigabytes in size. As a further
optimization, small data items such as an instant message, can
be piggybacked in its notification.

After notification, the retrieval of the data item can be
triggered in two places: a) the user reads the notification about
a new publish and decides that he wants to receive the data
right now, hence overriding all automatic decisions and b) the
Decision Engine has detected a preferable situation for data
transfer and triggers the retrieval by itself. In that case, the
corresponding data is already cached on the target device when
the user decides to access it.

C. Application interface

For the data dissemination control and the communication
between applications and middleware we propose a pub-
lish/subscribe interface. In contrast to traditional pub/sub in-
terfaces we have a strong focus on the decoupling between the
notification of subscribers and the actual transfer of the pub-
lished data towards the subscribers. Another important aspect
that is usually not covered in traditional pub/sub systems is
the difference between non-persistent message dissemination
and persistent distributed data storage.

Our interface provides the following methods:
• handle ← subscribe(topic)

This method is used to subscribe to topic. The Decision
Engine should notify a subscriber immediately, if there
are any persistently stored data objects for this topic.

• unsubscribe(topic)
This method is used to unsubscribe from topic.

• publish(topic, metainfo, data, permanent, ttl)
This is used to publish data object data with correspond-
ing meta information (e.g. an object id) to topic. The
flag permanent indicates, if the data object should be
deleted, once it was received by all subscribers. ttl is
the minimum time an persistent object needs to stored
(respectively delivery of a non-persistent message should
be pursued).

• 〈data[], metainfo[]〉 ← retrieve(topic, [filter])
This is used to enforce a retrieve of a data object,

overriding the Decision Engine. Retrieves all data objects
for topic, which metainfo matches filter.

• → notifyApp(topic, metainfo, [data])
This is used to notify a subscriber about a new data object.
Small data objects are piggybacked with the notification.

Note that this interface between applications and middle-
ware does not define when and to what devices a published
data item should be replicated. This is the task of the
communication protocol which we propose to anticipate user
behaviour. In the following section we sketch the idea of a
Decision Engine and its possible input parameters.

IV. DECISION ENGINE

We introduce the idea of a decentralized data replication
mechanism that we call the Decision Engine (DE). The DE
runs on each device and complements the pub/sub service.
Whenever a new data item gets published, the DE on the
sending device takes multi-dimensional aspects (from present
circumstances like connectivity to learned long-time behavior)
into account to decide:

• Time of sending: Now or later
• Set of recipients: All of them or just a subset
• Relay support: Handle transmissions alone or ask for help

Even if the sender’s DE decides that right now is an adequate
situation for sending, this does not necessarily apply to every
or any recipient. For example, if a recipient device is currently
in a subway with bad mobile reception, it probably does
not want to download large movie file, even if the sender
has a fast connection. This means that the recipient’s DE
takes similar aspects into account before it deems the current
situation adequate for receiving the data. Hence, before any
data replication takes place, the DEs on the sending and
receiving ends both need to agree that it is a suitable situation
for doing so.

A. Goals

In order to define efficient and smart data replication in
UCN, we need to set actual goals that are to be fulfilled in
this context. We have identified three major goals: Resource
conservation, data availability and privacy.

These goals are mutually exclusive as shown in Figure 2.
A high data availability can be established by flooding all
data items on all devices, which is not resource conserving at
all. Additionally, it violates privacy considerations since the
responsibility for storing data items does not get limited to
specific devices. High privacy constraints and specific device
choices might put a high load on single devices, which in
return violates the goal of resource conservation.

Depending on the application context, set of subscribers and
data item, these goals have to be prioritized and a suitable
replication strategy must be chosen.

B. Input parameters

In order to make its decisions, a device’s DE takes multiple
types of input parameters into account. For these parameters
we identify three classes of longevity:
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Fig. 2: Decision Engine play field

1) Immediate: Participating devices might be limited or
enabled in ways that can be detected right here and now
– possibly after a one-time manual setup by the user: a
mobile connection linked to a volume-based contract, high
data roaming costs abroad, a weak battery or low disk storage.
Depending on the sender and recipient devices’ locations, there
could be an opportunity for local ad-hoc communication.

2) Short history: Mobile devices tend to fluctuate strongly
in their availability. Among other possible issues, mobile
reception might be spotty, it might change from high-speed
LTE / 4G to a slow EDGE connection in an instant or the
battery might run empty. Besides the immediate status of the
device’s conditions, it makes sense to monitor these conditions
over a longer period like several hours. For example, if for the
last several hours a mobile device has not been moved, has
been plugged into an AC charger and has had a continuous
strong WiFi reception, it is safe to assume, that it is able to
receive a larger data transfer that might last several minutes.
Furthermore, it can even be used as a relay device to distribute
the data to other recipients. On the other hand, if its owner is
carrying the device while traveling, it might not be best choice
for big data transmissions, even if the immediate, current
connection might be favorable.

3) Long history: The daily behavior of an average person
is not completely random, but features periodic patterns like
being at the workplace from 9 to 5 on workdays, doing grocery
shopping afterwards or going to the gym each Tuesday and
Thursday evening. Many of these activities are correlated to
specific device accesses, as for example the work PC or the
tablet PC in the living room. Moreover, in terms of social con-
texts these activities are strongly linked to meeting the same
people (and their devices) again, like family members, work
colleagues or sports partners. When it comes to transferring
data between devices in such a context, there is not necessarily
an Internet connection required if local communication is
possible. This applies to immediate communication oppor-
tunities as described above, but also to long term patterns,
which we further discuss in section IV-C. Periodically running
pattern recognition and machine learning algorithms can help
detecting these opportunities and improving the DE’s set of

input information.

C. Learning
In the following, we focus on the long history aspects the

DE can learn over time. According to our considerations, these
include – but might not be limited to – device availability,
the user’s mobility and application usage behavior and the
long-term social graph. The learning process is based on
established machine learning and pattern recognition algo-
rithms, like Naı̈ve Bayes or Eigenbehaviors [3]. Input data for
these algorithms is a permanent data sampling and collection
a device performs for itself for the mentioned aspects. If
decisions require negotiations between the devices of different
users, the summarized conclusions instead of the raw data
should be exchanged to protect users’ privacy.

1) Device availability: As an example, assume that Alice
decides at 3pm to send a photo to Bob with her smartphone.
If her smartphone’s DE has learned that she meets Bob (i.e.
one of Bob’s devices is locally available) every day on 4pm, it
might be sensible to hold back the data transfer for one hour
if resources are otherwise limited. Given that delay-tolerant
networks even establish multi-hop routing via independent
face-to-face meetings, this deems a plausible scenario.

Availability is also an important factor to relaying and
retrieving persistent data items. For data items to be persisted
permanently (especially for new social contacts in the future),
data items should be preferably stored on devices with a long
history of high availability.

2) Mobility behavior: Similarly, assume that Alice wants
to take an important work document home to continue editing
it there. Since her home PC is switched off while she is away,
her work PC cannot communicate directly with her home
PC. However, she carries her smartphone from home to work
and back each day, hence the smartphone’s DE has learned
that it regularly has local contact to both other devices on
different locations. In this case, the work PC would search
for a relay device, negotiate with the smartphone and the DEs
recognize the smartphone as a useful relay for carrying the
work document home.

3) Application usage behavior: Now let us assume that
Alice wants to share the photo from her smartphone (see
section IV-C1) not only with Bob, but also with Carol, Dave,
and many other friends of hers. This is comparable to a typical
OSN scenario, where a photo is made available to hundreds
of friends. Depending on Alice’s current connection and the
availability of relays, her smartphone might be too limited to
provide all recipients at once. However, the affected DEs might
have learned that in similar situations Bob instantly looks at
Alice’s photos as soon as he receives the notification. Dave on
the other is much less interested in Alice’s photos and he just
browses through the Photo app once a week. In this case, Bob
should be prioritized before Dave to use the limited resources
optimally and to deliver the data primarily to the users who
actually care.

4) Social graph: In this section, we want to elaborate
further on the impact of the social graph on the data dissem-
ination and replication. Figure 3a shows an example social
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Fig. 3: Social user graph (circles) and their devices (boxes).
White devices are resourceful, grey devices are limited. The
dashed circles enclose the device communities defined by
cliques in the social graph.

graph and the device possessions. Alice, Bob and Carol form
a fully-meshed social sub-graph (clique). If Alice publishes
a data item for all her social contacts (Bob, Carol, Dave),
the connection between Bob and Carol can also be leveraged
for data replication and storage, unless Alice has defined
publisher-to-subscriber privacy for this use-case. Assuming
that Bob has a strong device which could relay Alice’s data
item, he possibly has a social interest in Carol receiving the
data item, hence Bob’s relay is used to disseminate it to Carol’s
devices as well. The edges in the social graph can even be
weighted, since there are approaches to quantify and measure
social closeness (for example [4]), which makes it possible to
define a threshold for cooperation.

To detect such cliques, the DEs periodically exchange their
own contact lists and build a local 2-hop social graph. A
maximal clique detection algorithm then locally detects col-
laboration communities. The clique problem is NP-complete,
but in our scenario we assume small social graphs that rarely
change, so the computational overhead is seen as feasible.
Such a collaboration community can now be transformed into
n-nodes tree with n being the overall number of devices in
the community. Figure 3b shows such a tree from the view of
Alice’s device A1. As indicated by the dashed circles, this tree
can be divided into two sub-trees, consisting of the community
between Alice, Bob and Carol (left, n = 4) and Alice and Dave
(right, n = 2) respectively. Given that a data item should be
published with A1 being the source, for each sub-tree it can
be disseminated via an application-layer multicast tree instead
of A1 sending all the data by itself. With A1 being a resource-
limited device, it makes sense for the left sub-tree to pull the
strong device B1 up to a higher level. However, since D1 is
not part of the community, A1 has to handle it by itself.

V. RELATED WORK

Due to privacy concerns there has been a major interest in
distributed systems for online social networking (OSN) (e.g.
[5]). However, these proposal neglect challenges like learning
from user behavior or dealing with network partitioning due
to user mobility. Recent work in the area of opportunistic net-
working [6][7] uses the social context to detect communities
which are used to improve data dissemination. [8] and [9]

employ publish/subscribe systems to disseminate messages to
communities over a opportunistic network and try to identify
good carriers based on mobility prediction. Finally [10] shows
a centralized approach to calculate the optimal distribution of
content updates for mobile social networks based on knowl-
edge of the social graph.

UCN shows several similarities to socio-aware opportunistic
networking like asynchronous communication due to mobile
devices. However, there are several major differences: In UCN
we focus on communication between users, which have a
personal relationship and trust among each other. To protect
users’ privacy we utilize this trust to store data only on trusted
devices. Finally we assume a set of very heterogeneous devices
(from smartphones to personal cloud servers).

VI. CONCLUSION

We sketched an approach to socio-aware data replication
that ties in to the emerging scenario of user-centric networking.
Our approach is based on a publish/subscribe service as com-
munication abstraction as well as a novel socio- and resource-
aware mechanism for smart replication choices, which we
call Decision Engine (DE). We defined the goals of the DE,
specified the corresponding input parameters and sketched an
example decision flow. Our next step is the implementation
and evaluation of a DE prototype. However the evaluation of
socio-aware protocols is still a major research challenge, since
multi-dimensional user models covering all relevant aspects of
user-behavior are not available yet.
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