
Proceedings of the 2004 Winter Simulation Conference
R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

INTEGRATION OF THE FREEBSD TCP/IP-STACK
INTO THE DISCRETE EVENT SIMULATOR OMNET++

Roland Bless
Mark Doll

Institute of Telematics
University of Karlsruhe

Zirkel 2
76128 Karlsruhe, Germany

ABSTRACT

The discrete event simulator OMNeT++, that is pro-
grammed in C++, shows a steady growing popularity. A
shortcoming of it was the lack of a validated TCP imple-
mentation. In order to avoid a re-implementation of a full-
featured TCP, including all potential implementation errors
and costly validation tests, we integrated a TCP/IP stack of
a real operating system into OMNeT++. In this paper we
describe the difficulties of the integration process as well as
the applied solutions. We also present some evaluation re-
sults that outline memory and CPU usage.

1 INTRODUCTION

Investigation of new network protocols and mechanisms of-
ten require simulations in order to study their behavior and
reactions to different parameter settings in larger scale envi-
ronments. But results are only reliable in case the simulation
models are verified to emulate the real protocol behavior.
Therefore, validated implementations of network protocols
in simulators are an important precondition for expressive
simulations.

OMNeT++ (Varga 2004) is a discrete event simulator
based on C++, and it is highly modular, very well structured
and scalable. It provides a basic infrastructure wherein mod-
ules exchange messages. Thus, it is not restricted to network
simulations and due to its hierarchical structure, the level of
simulation detail can be increased incrementally.

Its disadvantage, compared to other simulators (like ns-2
(Information Science Institute (ISI) 2004)) for example, is
the currently limited amount of available simulation mod-
els for different network protocols and technologies. One of
the predominant protocols in the Internet is the Transmission
Control Protocol TCP, because most applications, including
the World-Wide Web transfer protocol HTTP, are using it for
reliable data transfer. But for the discrete event simulator
OMNeT++ there were no validated TCP implementations
available yet. The TCP implementation must be complete,
i.e., it must offer all essential features that real implemen-

tations use. Moreover, its behavior must also be compliant
with the relevant standards. Therefore, many tests must be
performed to validate the implementation against all proto-
col features which is costly and time consuming.

Our approach aimed to re-use an existing full-featured
TCP implementation of a current operating system in order
to avoid a re-implementation of a full-featured TCP, includ-
ing all potential implementation errors and costly validation
tests. We adapted the FreeBSD TCP/IP implementation to
integrate it into OMNeT++. We choose FreeBSD (FreeBSD
2004), because its implementation is more structured than
other implementations like Linux. The efforts were indeed
successful so that now a full featured TCP/IP implementa-
tion is available for OMNeT++.

The paper is organized as follows. First, we describe
some properties of the OMNeT++ and FreeBSD respec-
tively. Then integration problems of FreeBSD and OM-
NeT++ are pointed out in section 3. The applied evaluation
process is described in section 4. The paper closes in section
5 with a summary and outlook on further work.

2 OMNET++ AND FREEBSD

OMNeT++ is a discrete event simulator programmed in
C++. It has an open-source distribution policy and can be
used free of charge by academic research institutions. It runs
on Windows and Unix platforms, including Linux, and of-
fers a command line interface as well as a graphical user
interface.

Its simulation models consist of a network of simple mod-
ules and compound modules. Due to the fully hierarchical
design of OMNeT++ the latter can be composed of simple
modules or further compound modules (there is no limit of
nesting levels). Simple modules are programmed in C++,
the network topology and simulation parameter values are
specified in an own language that is called NED. A mod-
ule can have gates that establish connections to other mod-
ules via links, which have an assigned data rate and bit
error rate. Messages between modules are either sent via
gates and traverse the outgoing links, or, can be sent di-



Bless and Doll

rectly to other modules. Simple modules typically ‘wait’
for messages which can also stem from the module it-
self (so-called self messages). Upon arrival of a message
the module can perform the necessary actions in a method
called handleMessage() (processing takes no simula-
tion time). The module usually generates new messages
and sends them to other modules or itself. These messages
are inserted into a central queue (implemented as heap) and
taken out by the receiving module. Simulation time only
passes from event to event in discrete steps, so OMNeT++
has its own time domain.

FreeBSD is a freely available UNIX implementation and
its kernel offers an implementation of TCP. FreeBSD has a
traditional monolithic kernel and uses function calls as well
as interrupts to perform its tasks. For instance, such an in-
terrupt is triggered by a network interface card (NIC) that
receives a data packet. At the lowest layer, a device driver
for the NIC allocates a memory buffer, a so-calledMBuf,
and copies the packet contents into this buffer.

Feature FreeBSD OMNeT++

Structure monolithic modular
Scope one TCP stack

per host
several TCP
stacks per
simulation

Interaction function calls message sending
Interruption hardware/timer

interrupts
not possible
while processing
a message

Language C C++

Table 1: Overview of major differences between FreeBSD
and OMNeT++

Table 1 shows a comparison of the different features. The
integration process is described in the next section.

3 INTEGRATION OF FREEBSD INTO OMNeT++

In order to accomplish the integration of FreeBSD into OM-
NeT++ we need to find a synthesis between the distinct fea-
tures of the different worlds. The monolithic nature of the
FreeBSD kernel is no real obstacle, because integration of
the complete code into one module may be easier this way.
Because C is a subset of C++, it is also possible to use C
code with C++ code together, but one must take care of the
different linkage.

3.1 Source Code Adaptation

One problem were the conflicting definitions of similar in-
clude files within the OMNeT++ host system (in our case
Linux) and FreeBSD. For example the structuresockaddr
shows slight differences between Linux and FreeBSD that

are nevertheless incompatible with each other. The solu-
tion was to use all the FreeBSD include files for compila-
tion of the FreeBSD code and to define corresponding struc-
tures with a different name on the OMNeT++ side. This has
also the advantage that the FreeBSD part may be also eas-
ily ported to the version of OMNeT++ that runs on top of
the Windows operating system. Thus, OMNeT++ uses the
include files of its host operating system, and the FreeBSD
part uses its own set of include files to use the correct struc-
ture definitions.

The main problem to solve was related to the scope of
variables. In FreeBSD kernel variables are globally declared
and defined for one host only. In a simulation environment
one wants to run several hosts in parallel, so every required
FreeBSD global and static variable must be made local to
each host. Thus, we used a structure to hold all the kernel
variables for one host. In the FreeBSD source every occur-
rence of the variables must be replaced by a reference into
the corresponding structure. For instance the variablexyz
is replaced byD->xyz , whereD points to the current host
structure that contains all the global and static kernel vari-
ables for this particular host. Unfortunately, the develop-
ers of FreeBSD used at several places the same name for a
variable and a type, e.g., the variableifnet is also defined
with the same name as a structure type. Thus, it was not eas-
ily possible to use a straightforward search and replace ap-
proach by a script. However, changes in the FreeBSD were
minimized in order to reduce the probability of introducing
new errors and to allow for easier re-porting a later FreeBSD
release.

3.2 Modules and Interactions

Early in the adaptation process it became clear that it was
much easier to adapt and integrate also functions like ARP
and the whole IP stack to OMNeT++ than to provide those
functions in OMNeT++ itself. For example, to support path
MTU discovery ICMP must be implemented, too.

Our design decision led to the approach to encapsulate
the complete TCP/IP into one OMNeT++ simple module.
Thus, thecHost class and OMNeT++ module encapsu-
lates the complete TCP/IP stack of FreeBSD and offers a
message-based interface to the application as well as an in-
terface (in- and out-gates) to the medium (cf. fig. 1). From
the FreeBSD’s viewpoint OMNeT++ is like a device that
transmits and receives ethernet frames.

A disadvantage may, however, be that a FreeBSD kernel
cannot be removed easily, because the code is not written
for a proper cleanup since it is usually makes no sense to
remove a kernel.

There are two possibilities how such hosts are connected
to each other: either by a direct point to point link (which is
also handled separately in FreeBSD) or via a broadcast ca-
pable medium. Because OMNeT++ does not support1 : n-



Bless and Doll

Host

Application

Medium

cAppl

cMedium

cHost

In gate

Out gate

NIC 1 NIC 2

FreeBSD TCP/IP Stack

Figure 1: Module structure

or n : 1-connections directly, one must provide a separate
module for this purpose. This module is provided by the
classcMedium which has basically the same functional-
ity like a simple ethernet switch. It is possible to assign IP
network prefixes to thecMedium in order to configure IP
addresses of attached hosts automatically.

Figure 2: Snapshot of OMNeT++ gui a simple test scenario

OMNeT++ message cannot be used to exchange data be-
tween both worlds, because they are C++ classes and cannot
be used in the FreeBSD part. Within thecHost module data
can be put from OMNeT++ into the FreeBSD domain by
calling the FreeBSD function surrounded byENTER_BSD
andLEAVE_BSDmacros. The other direction is more com-
plicated. Functions that can be called from the FreeBSD

domain must be present in thecHost class, but this is
C++ code and cannot be called from the C-based FreeBSD
part directly. Therefore, those functions must be declared
as functions with C calling conventions in the OMNeT++
part. These can then access the currentcHost C++ object
by using athis pointer that was set correctly by the last
ENTER_BSDmacro. This is guaranteed to work, because
the FreeBSD part only gets active when called from within
OMNeT++cHost class and after anENTER_BSD.

The application interface for using TCP is essentially the
same as the well-known socket interface. The difference is
that the traditional functions calls are not used, but equiva-
lent OMNeT++ messages that are sent between both mod-
ules (cf. figure 1). Every socket function has an equivalent
OMNeT++ message that simply contains all the necessary
function parameters. In thecHost module C wrapper func-
tions convert between OMNeT++ messages and functions
calls. Results of FreeBSD functions calls are also returned
by messages. ThecAppl class provides a sample appli-
cation that simply opens a connection to another host and
sends a specified amount of data. This way it can be used as
load generator. The data can contain real application data,
because the application byte stream is really passed from
one host to the other.

A further problem occured with the function calls that
block the calling process, or with functions that let a process
sleep or wait for a while. The must not stop in the FreeBSD
kernel part, because then the simulation would also stop.
Therefore, we used internally (in thecHost module) only
non-blocking variants of the FreeBSD calls, but provided
also blocking variants to the application interface. This
works as follows: if a FreeBSD function would normally
block the caller, it returns the error codeEWOULDBLOCK
when called as non-blocking variant. In this case thecHost
module does not send a return message, but stores a pointer
to the original request message. If the kernel would wake
up the caller, the list of ‘sleeping messages’ is searched in-
stead. If the corresponding message is found, it is sent again
(as self message) to thecHost module. This ensures that all
necessary actions are taken and that changes in the internal
state of the kernel are considered. But this time the function
call will definitely not return anEWOULDBLOCKand it can
be completed as usual.

3.3 Timers

Timers were another problem. The FreeBSD stack needs
several different timers per host (e.g.,if_slowtimo ,
arptimer , in_rtqtimo , tcp_slowtimo ,
ip_slowtimo ) and per TCP connection (e.g.,
tcp_timer_rexmt , tcp_timer_persist , tcp
_timer_keep , tcp_timer_2msl , tcp_timer
_delack ). In order to reduce the number of timers,
we used only single timers were appropriate, e.g., the



Bless and Doll

ip_slowtimo timer simply deletes fragments that were
not reassembled within a defined time period.

The time basis is the simulation environment, so the (vir-
tual) clock must reside in the OMNeT++ part. FreeBSD uses
a ‘tick’ as time unit which is 10 ms, and the kernel global
variableticks is incremented every 10 ms by a timer in-
terrupt routine. In order to prevent a lot of OMNeT++
messages, we did not choose to emulate the timer interrupt
by OMNeT++ messages. Instead we redirected access to
the ticks variable to a functiongettick_toomnet() ,
which returns the number of hundredth of a second since the
simulation ran. The OMNeT++ functionsimtime() re-
turns the simulation time for this purpose, but it is a floating
point value (double) and must be converted accordingly into
the integer value. To prevent that all hosts increment their
ticks at the same instant, astartup value is added to each
cHost module, which can be set individually for each host.

Timers are set by specifying a time period as number of
ticks. Therefore, we provided functions on both sides, to
allow a timer management that is usable by the FreeBSD
kernel. Basically, a timer is realized as self message in OM-
NeT++ that calls corresponding FreeBSD functions when it
is received by thecHost module.

3.4 Convenience functions

In order simplify the simulation configuration an automatic
routing is provided by the OMNeT++ classcRoute . It uses
an OMNeT++ internal mechanism to calculate the shortest
paths between the hosts. Routers can be easily provided by
switching the variablebsd_ipforwarding of a cHost
module to 1.

For debugging purposes TCP traces are also provided.
They can be enabled by setting the OMNeT++ simulation
parametershowtraffic for the cHost module. Figure
3 shows an example output from the test scenario in figure
2.

4 EVALUATION

The evaluation of the taken approach had two different
goals. First, it was of particular interest to evaluate the mem-
ory and CPU consumption of thecHost modules to esti-
mate the scalability of the model. Second, it was important
to roughly verify the behavior of the TCP implementation to
exclude any implementation mistakes.

All tests for the evaluation were performed on a Xeon
dual processor system running at 2.2 GHz with 4 GiB RAM
(1 GiB= 1024 MiB, 1 MiB=1024 KiB, 1 Kib= 1024 bytes).

4.1 Scalability

We ran tests with 10, 100 and 1000 hosts (plus additional 20
hosts that act as routers) and up to two simultaneous connec-

tions per host. The average memory consumption per host
was determined to be around 20 KiB. Additional memory of
150–170 KiB is required per (bi-directional) TCP connec-
tion, which is mainly caused by the socket buffers.

Simult. Connections 0 1 2
Hosts

10 0.467 2.199 4.196
100 3.361 30.575 59.638
1000 64.233 434.724 823.019

Table 2: Run times in seconds for 1 hour of simulated time

Run times of the simulation experiments are shown in ta-
ble 2. Every simulation ran for a simulated time of 60 min-
utes. As one can see, initializing the 1000 hosts costs already
a little bit more than a minute. To simulate 1000 hosts with a
total of 2000 simultaneous connections for 1 hour simulated
time, it took nearly 14 minutes of runtime. In this case, the
simulation was four times faster than the same scenario in
real time. We identified that most of the run time is required
to process timer messages. OMNeT++ uses a heap to store
messages in its future event set, so this can be considered as
optimal. Nevertheless each message requires memory and
must be inserted and removed from the heap. It is obvious
that we will try to remove this bottleneck in the future.

4.2 TCP validation

We also performed tests in order to check that all TCP fea-
tures work as expected. The number of tests was small,
because we did not modify the TCP code of FreeBSD, so
we did not have to test all potential error cases and TCP’s
reaction to them. The major motivation for using an im-
plementation of a real operating system was to particularly
avoid massive and thorough validation tests. Nevertheless,
we shortly checked that mechanisms like delayed acknowl-
edgments, slow start, congestion control, fast retransmis-
sion, and fast recovery as well as the new reno variant of
TCP worked as expected. The short validation tests revealed
indeed a bug that was introduced by a wrong timer offset
calculation withincHost .

5 CONCLUSIONS AND FUTURE WORK

In this paper we described an integration of a real TCP/IP
stack (FreeBSD) into the simulation environment OM-
NeT++. The implementation provides a host module that
carries a complete TCP/IP stack in it. Host modules can
also be used as routers by simply activating the forwarding
functions of FreeBSD. For convenience of simulation users
the implementation provides an automatic IP addressing of
modules and calculation of routing tables, too.



Bless and Doll

->Test1.hostA[0] 2.000000 ARP (ARPHeader) REQUEST: 66:06:0c:b6:30:58 00:00:00:00:00:00 192.168.0.1 192.168.0.4
->Test1.hostA[0] 2.040140 TCP (TCPHeader) [3014554104...3014554104) (0)@0 win 57344 <SYN> MSS 1460 WSF 0 TS 200 0
->Test1.hostA[0] 2.200873 TCP (TCPHeader) [3014554105...3014554105) (0)@1491920413 win 57920 <ACK> TS 220 246
->Test1.hostA[0] 2.200928 TCP (TCPHeader) [3014554105...3014555105) (1000)@1491920413 win 57920 <ACK,PUSH> TS 220 246
->Test1.hostA[0] 2.325622 TCP (TCPHeader) [3014555105...3014555553) (448)@1491921414 win 57920 <ACK> TS 232 258
->Test1.hostA[0] 2.448015 TCP (TCPHeader) [3014555553...3014557001) (1448)@1491921414 win 57920 <ACK> TS 244 271
->Test1.hostA[0] 2.449277 TCP (TCPHeader) [3014557001...3014558449) (1448)@1491921414 win 57920 <ACK> TS 244 271

Figure 3: Example debugging output from a simple test scenario

It was shown by a careful evaluation that the approach
is scalable and works correctly. The approach has also the
advantage to let one use the same code within the simulation
environment as well as within a real implementation.

In comparison to emulation approaches like User-Mode
Linux (User Mode Linux Community 2004) or vBET (Jiang
and Xu 2003) we believe that our approach is more scalable
for network simulations, because it has not the full function-
ality of a complete operating system.

Currently, we are porting FreeBSD 4.9 and the KAME ex-
tensions to OMNeT++ in order to have a full-featured IPv6
and MobileIPv6 implementation. A perl script that uses a
syntactical analysis to perform the replacement of variables
in the BSD source code would be a great help here and is a
topic for further research.

Furthermore, we are investigating solutions to avoid using
OMNeT++ messages for host timers. A potential solution
could be the use of a dedicated timer module which man-
ages timers on basis of ticks and which is able to perform
direct callbacks into the FreeBSD code. We plan to release
the TCP/IP stack to the public. Furthermore, in order to al-
low the use of routing daemons for simulating routing pro-
tocols, we want to port the necessary system call interface
functions.

ACKNOWLEDGMENTS

We would like to thank Jérôme Freilinger who performed all
the programming and evaluations.

REFERENCES

FreeBSD 2004, April. The FreeBSD Project.http://
www.freebsd.org/ .

Information Science Institute (ISI) 2004, April. The
Network Simulator ns-2.http://www.isi.edu/
nsnam/ns/ .

Jiang, X., and D. Xu. 2003, August. vBET: a VM-Based
Emulation Testbed. InProceedings of the ACM SIG-
COMM 2003 Workshops, 95–104. ACM.

User Mode Linux Community 2004, April. User Mode
Linux Community Site.http://usermodelinux.
org/ .

Varga, A. 2004, April. OMNeT++ Community Site.http:
//www.omnetpp.org/ .

AUTHOR BIOGRAPHIES

ROLAND BLESS is a senior research assistant at the Uni-
versity of Karlsruhe, Institute of Telematics. He studied In-
formatics at the University of Karlsruhe and got his Ph.D.
degree Dr.-Ing. in February 2002. His research interests are
Quality-of-Service, QoS management, Differentiated Ser-
vices, Multicast, Mobility and QoS Signaling. He is actively
participating in IETF Working Groups and brought parts of
his work into the IETF standardization process. Dr. Bless is
also member of IEEE and the German GI.
MARK DOLL is a research assistant at the University of
Karlsruhe, Institute of Telematics. He studied Physics at
the University of Braunschweig and joined the University
of Karlsruhe in 2001. He is a Ph.D. student and has research
interests in signaling and management of resource alloca-
tions for the Differentiated Services framework, especially
in the case of multicast scenarios.


