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Abstract—Communication between users poses a privacy prob-
lem as soon as it relies on a third party. The problem ranges
from personalized advertising to mass surveillance and applies
primarily to centralized application service providers. However,
also nodes in decentralized approaches are often under control
by a third party. We argue that application data and metadata
between a set of users can stay private only by self-sufficiency, i.e.
exclusive end-to-end communication between devices under these
users’ control. State synchronization is a main challenge here,
since especially mobile devices are prone to churn and varying
connectivity. We present SocioPath, a decentralized protocol
for self-sufficient user-to-user communication. It handles device
heterogeneity by decoupling data objects from notifications and
keeping recurrent state exchanges small. Additionally, it offers
a user-centric application interface which abstracts from devices
towards the user. Evaluation results show that even under heavy
churn, it is possible to achieve a high delivery ratio and large
scalability.

I. INTRODUCTION

Application service providers like Facebook or Google are
popular instruments for communication between users. A user
does not perceive such a provider as a participant in the
communication. Instead, the provider is merely a means to
an end by providing large data storages with high availability.
Hence, transferring data from the users’ personal devices to
the provider is accepted as a necessary evil here. Full access to
all customers’ data enables a third party (such as the provider
or an intruder) to perform large-scale analysis on the customer
data and jeopardize the customers’ privacy. Possible analysis
goals are detailed user profiling, industrial espionage or mass
surveillance by authorities.

One straightforward solution for the customer is end-to-
end encryption. This prevents a third party to read the data
two users exchange. Also, connection metadata such as IP
addresses can be obfuscated by using proxies or an onion
routing service (e.g. [1]). However, the users still have to give
away their application metadata to the provider. This type of
metadata includes two types of information: Firstly, explicit
metadata is required for the service to address its users and
to function properly. Examples are email addresses, online
social network profiles or entries in an address book. Secondly,
implicit metadata accumulates at the provider’s end when
users access the service. Examples are the date and time of a
sent email or the frequency of visiting a social network profile.
Over time, a third party can at least create profiles about inter-
contact times and contact durations between specific users.
With further research via side channels (such as performing

a web search on an email address), it might infer even more
information about a user. The impact of implicit metadata on
privacy is subject to current research [2].1

This problem also applies to decentralized approaches for
user-to-user-communication. Such approaches make use of
federated servers (e.g. [3]) or structured P2P networks (e.g.
[4],[5]). Unless each user hosts his data on a separate dedicated
server, a federated server holds multiple user data sets, similar
to a centralized approach. In a structured P2P network, all data
gets distributed across the participating devices according to a
protocol-specific metric. A single user cannot influence if the
device which is responsible for his data belongs to himself, a
friend or an unknown person.

We argue that data and application metadata between a set
of users can stay private only if exclusively devices under
these users’ control communicate end-to-end. The devices
controlled by a single user range from personal devices like
smartphones and PCs to high-bandwidth servers, as long as
they are administrated by the user. The amount and types of
such devices differ from user to user. This heterogeneity has
a strong impact on data availability, yet only these devices
should realize all data storage and distribution. This self-
sufficiency is a novel approach for decentralized user-to-user-
communication.

Self-sufficiency needs to be defined per communication
process: If Alice, Bob and Charlie share pictures among each
other in a group, all their devices can be involved in the
distribution of the pictures. If Bob wants to send an instant
message to Charlie only, Alice’s devices must not get involved
in the transmission or the storage of the message, since that
would pose an unwanted leakage of data and metadata.

These examples go intuitively together with a user-centric
approach: Both application developers and end users should
only have to care about the addressing of human recipients,
not their specific devices.

We present SocioPath, a decentralized protocol with the
following main features:
• self-sufficient communication between two or more users

in a closed group
• user-centric abstraction from single devices
• an exchangable and adaptable distribution strategy
• handling of temporary device unavailability (churn)

1http://metaphone.me
https://immersion.media.mit.edu



SocioPath is based on a user-centric publish/subscribe
paradigm, where each topic has a well-defined owner who
has full control over the access rights of other users. Section
II of this paper describes the basic concept and Section III
elaborates on the protocol details. The protocol relies on some
kind of distribution strategy, which distributes published data
objects between the involved devices. An example distribution
strategy is described in Section IV. Evaluation results in
Section V show that even under heavy churn, it is possible to
achieve a high delivery ratio for each published object. These
primary results are followed by some application examples
(Section VI). Section VII shows an overview about related
work. The paper closes with a summary and considerations
towards future improvements (Section VIII).

II. BASIC CONCEPT

SocioPath offers a publish/subscribe (pub/sub) service for
the distribution of a data object from one user to a closed
group of recipients. Each object is tied to a specific topic,
whereas each topic is tied to a specific user, the topic owner
(TO). Every user has a unique user ID (userId) and every topic
has the following structure:
Topic :=< Title@userIdTO >. Title is an arbitrary string and
identifies an application or service that relies on SocioPath for
data distribution.

Let the set of all users in a SocioPath network be U. The set
of all topics in the system amounts to T :=

⋃
∀X∈U TX with

TX being the set of topics where user X is TO. ∀X,Y ∈ U
with X 6= Y it is TX ∩ TY = ∅.

TO X of t ∈ TX defines the allowed subscriber set At

from his contacts CX . Only users in At may learn about and
retrieve an object αt tied to t. St is the set of subscribers,
i.e. users that make use of this permission. They get notified
about a new or modified αt. Hence, it is St ⊆ At ⊆ CX ⊆ U.
St includes at least the TO himself. Let DX be the devices
that user X possesses. αt is to be distributed to the devices
Dt ⊆

⋃
∀X∈St DX .

TO X of t ∈ TX also defines the allowed publisher set
Pt ⊆ CX of users allowed to publish an object αt. Pt includes
at least the TO himself. If user Y publishes αt, X accepts and
distributes αt to St only if Y ∈ Pt.

This concept of data distribution involves only target de-
vices, i.e. devices that are under control by the users in Pt∪St.
The TO devices coordinate the data distribution from Pt to St
devices. This results in decentralized and self-sufficient data
distribution which protects both data and metadata privacy of
the involved users: If αt is distributed between target devices
only, only the device owners gain knowledge that αt exists.
We call this feature closed data invariant. Figure 1 depicts an
example scenario.

For maximum privacy, only the TO of a topic t knows about
St, Pt and At. Another possibility is to distribute this knowl-
edge to target devices of other users, which poses a trade-off
between availability and privacy where e.g. subscribers can
learn about other subscribers. However, the closed data variant
still holds.

Enforcing the closed data variant is more restrictive than in
other pub/sub systems, where a third party broker maintains
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Fig. 1: Closed data invariant: The recipients for object α are
both Y and Z, while object β is for Y ’s eyes only. If each
object is transferred between devices of the respective target
device group only, Z never learns that β exists.

all subscribers and published messages. In a structured P2P
network, a node’s responsibility for an object is defined by
the closeness between its nodeId and the object according
to a protocol-specific metric. If a broker node is defined by
its nodeId only, this node might not be a target device. This
violates the closed data invariant.

User-controlled devices differ strongly in terms of availabil-
ity and connectivity: A smartphone might be switched off at
night and have slow or expensive connectivity during most
of the day. A personal server might have 99,9% availability
and neither traffic nor bandwidth are a big issue. To deal with
heterogeneity, we separate the distribution of an object into
two steps:
• First, all target devices receive a notification. The no-

tification contains information like the object’s bytesize
and its source devices. We assume that notifications are
small enough that even devices with slow or expensive
connectivity can cope with them.

• Second, each target device decides if and when it wants
to retrieve the object it was notified about. Since a data
object can be very large, a mobile device with slow
connectivity can delay the retrieval until it has WiFi
access. If no suitable application is running on a target
device, it can even ignore the notification.

Additional notes

All objects are persistent until an individual time-to-live
(TTL). If a new user subscribes to a topic, he still has access
to older objects that do not have exceeded their TTL yet.

The distribution of a notification to all target devices is the
task of a replaceable distribution strategy that can be freely
defined and improved in terms of efficiency and resource-
awareness [6], as long as it holds the closed data invariant. For
example, notifications can be delegated to a stronger device
among the target devices. Furthermore, the strategy needs to
cope with offline devices. Missed notifications have to be
resent to devices as soon as they are available again. We
present an example distribution strategy in Section IV.

The grounds for a target device’s decision if and when to
retrieve the object is to be defined as part of the distribution
strategy as well.



Devices that have successfully retrieved an object can
provide it themselves to other target devices. This requires
in turn keeping a list of source devices up-to-date and making
it available for other target devices. It is possible to reuse
SocioPath’s pub/sub service here, as we do for maintenance
information (see Section III-D). However, the details for
multi-source retrieval are out of scope of this paper. For the
remainder, we assume that objects are retrieved from their
origin or a TO’s device respectively.

III. PROTOCOL DETAILS

In this section we discuss SocioPath’s protocol details that
are required to establish the basic concept we described. The
presented design features the overall architecture, consisting
of the application interface, RPC message exchange and the
required data structures. In addition, we describe required
workflows such as adding a new device or a new contact.
This design is valid for all distribution strategies, for which
we present a basic example in Section IV.

A. Application interface
SocioPath is designed to be a protocol that supports multiple

applications per device at the same time. To achieve this, each
application assigns its objects to a different topic. Each object
is uniquely identified by the combination of topic, a unique
object ID (objId) and creation timestamp. It gets passed to
SocioPath, which in turn is responsible to notify target devices
and establish retrievals on request. The pub/sub interface is
shown in Figure 2 and provides methods as follows. Note that
methods from the application to SocioPath are symbolized
by → and methods from SocioPath to the application are
symbolized by ←.
• → publish(topic, objId, timestamp, object, ttl)

This method passes an object to SocioPath. From the
application point of view, SocioPath offers a best-effort
service to notify all target devices about the new object
and deliver it if demanded. The object gets stored in
SocioPath’s data storage until ttl exceeds.

• → subscribe(topic)
This method subscribes the owner of this device to topic.

• → unsubscribe(topic)
This method unsubscribes the owner of this device from
topic.

• ← notify(topic, objId, timestamp)
After a target device was notified about a new object, this
method notifies all applications bound to topic about that
object.

• → retrieve(topic, objId, timestamp)
This method lets an application retrieve an object it
was notified about via notify(). It is transparent to the
application if the object is already available on the same
device or if it has to be requested by SocioPath from
another device first.

B. Signaling between two devices
All signaling communication in SocioPath is RPC based.

We assume for the remainder of this paper that all com-
munication is encrypted and authenticated using public key

Fig. 2: Architecture overview

cryptography. The RPC interface offers services as follows.
Note that requests are symbolized by → and responses are
symbolized by ←.
• → NOTIFY(topic, objId, timestamp, publisher, objSize,

obj)
This request notifies a receiving device about a new or
modified object. The publish timestamp lets the receiver
detect if an existing object has been modified. Addition-
ally, the request holds the original publisher, since he
might differ from the owner. It also holds the object’s
size, since this is an important factor for the RETRIEVE
decision. Furthermore, a small object can be piggybacked
as obj if its size does not justify the overhead of a
decoupled retrieval.

• ← NOTIFY()
This response is an acknowledgment without further
information.

• → RETRIEVE(topic, objId)
This request lets a device retrieve an object it was notified
about. A retrieval is not necessary if the object was
piggybacked in the obj field of a NOTIFY request.

• ← RETRIEVE(object)
This response holds the object that was requested for
retrieval. As soon as it has arrived, an application can
retrieve() it from the local device.

• → BOOTSTRAP()
This request is triggered by a new device to be added
into a user’s device pool (see Section III-E).

• ← BOOTSTRAP(userId, publicKey, encPrivateKey, con-
tactList, neighborList, ownTopicList)
This response holds all information to bootstrap the new
device (see Section III-E).

• → NEWCONTACT(userId, publicKey, userDevices)
This request holds the information that is sent to a new
contact during the pairing process (see Section III-F).

• ← NEWCONTACT(userId, publicKey, userDevices)
This response holds the information that is back sent from
a new contact during the pairing process (see Section
III-F).

C. Data Structures
Each device needs to hold multiple data structures for main-

tenance. The contents of the data structures are different for



userId User Alias Public Key Private Key

0xAAAA Alice Alison dX38UjmI... KmL71BgN...
0xBBBB Bob Bobsen lsuusFnc...
0xCCCC Charlie Charleston BQ7RKNUSe...

TABLE I: Example Contact List for user Alice

userId deviceId Device Locator Comment

0xAAAA 0x1111 123.45.67.89 Alice’s device
0xBBBB 0x2222 234.56.78.90 Bob’s device
0xCCCC 0x3333 34.56.78.123 Charlie’s 1st device
0xCCCC 0x4444 45.67.89.234 Charlie’s 2nd device

TABLE II: Example Neighbor List for user Alice

each user but synchronized across all devices that belong to a
single user. Synchronization is realized via notifications about
maintenance topics (see Section III-D) and hence the task
of the distribution strategy. We aim for eventual consistency
[7], i.e. each device makes its decisions on its current state
and updates are assumed to propagate eventually. The data
structures for a specific user are:

1) Contact List: The Contact List contains the user X who
controls the device and CX . Each entry is uniquely identified
by a 160 bit userId, which is the only user information
required by the protocol to function properly. Additional fields
are a human readable alias and a public key for encryption
and authentication. The process of adding a new contact
is described in Section III-F. An example Contact List is
displayed in Table I.

2) Neighbor List: The Neighbor List holds all required
information about the X’s and CX ’s devices. This includes
a mapping between userId and a device ID (deviceId) plus a
device locator (e.g. IP address). The deviceId gets randomly
generated once the device joins for the first time. An example
Contact List is displayed in Table II. For the remainder of
this paper, we assume that the problem of locating a device is
solved as long as they are online.

3) Own Topics List: The Own Topics List on a device of
user X holds information about all topics TX . Each topic
is identified by its title. The access rights per topic t are
defined by three lists which hold the userIds in Pt, At and
St respectively.

4) Data Storage: The Data Storage holds the notifications
for topics the user is subscribed to as well as corresponding
objects if available. The value of objId is either chosen
randomly or set to a fix value by the application during
publish. An application can overwrite an existing object by
publishing a second time using the same objId.

An example Data Storage is displayed in Table III: Here,
Alice’s profile page in a social network application has the
topic Profile@AAAA and features different objects, such as
a profile picture (objId 23) and a birth date (objId 42). If
Alice updates her picture, this triggers a publish with topic
Profile@AAAA, objId 23 and a new timestamp. Each device
that is notified about this new publish, compares the new
timestamp with the one in the Data Storage and sees the object

Topic objId Timestamp TTL Object

Profile@AAAA 23 1234 -1 (bin)FF3C...
Profile@AAAA 42 1234 -1 July 1st...
InstMsg@AAAA 1208234 1000 5000 Hi, how...
Files@BBBB 1298912 1800 -1 (not retrieved)

TABLE III: Data Storage on a device of user Alice

Topic Title Allowed Publishers Subscribers

OwnContacts Topic Owner Topic Owner
OwnTopics Topic Owner Topic Owner

Devices Topic Owner Topic Owner + Contacts
SubscribeMe Topic Owner + Contacts Topic Owner

TABLE IV: Maintenance Topics

has been updated and can be retrieved.

D. Maintenance Topics
Pub/sub is not only useful for applications, but can also

be used to keep the data structures from Section III-C up-to-
date. For example, if a user wants to subscribe to a specific
topic, all devices of the TO must be informed. We can achieve
this by defining maintenance topics that use the same pub/sub
service that is offered to applications. The maintenance topics
are defined per user, hence every user is the TO of his own
maintenance topics. The maintenance topics for user X are:
• OwnContacts@X: For updates in X’s Contact List. Ex-

amples: New contact added, existing contact is removed.
See Section III-F about adding a new contact.

• OwnTopics@X: For updates in X’s Own Topics List. Ex-
amples: New subscriber, new topic, revoking a contact’s
publishing rights from an existing topic.

• Devices@X: For updates in devices X owns. The sub-
scribers update their Neighbor Lists accordingly. Exam-
ples: New device added, IP address change.

• SubscribeMe@X: For subscription requests by other con-
tacts. The topic to be subscribed is piggybacked in the
notification. See Section VI for an example use case.

Depending on the maintenance topic, updates are only for
the TO himself or for the TO and his contacts. The Own
Topics List gets filled accordingly. For example, if the TO
gets a new device, his contacts must be informed about this,
so notifications about new objects reach the new device as
well. However, if the TO revokes a contact’s publishing rights
for a topic, this should be only propagated to his own devices.
Details are displayed in Table IV.

E. Adding new devices
In this section we discuss how multiple devices get assigned

to a single user X . The very first device in a device pool
sets up the data structures with initial values. X’s contact
information as described in Section III-C1 gets created and is
the only entry in the Contact List. Similarly, the device x1’s
information as described in Section III-C2 is the only entry
in the Neighbor List. The Own Topics List contains only the
maintenance topics with full access rights given to X as the
TO. The Data Storage is empty.



Additional devices are added incrementally into the user’s
device pool. Each new device xN+1 has to be paired with an
existing device xi ∈ DX =: {x1, . . . , xN} from X’s device
pool. xN+1 triggers the pairing by sending a BOOTSTRAP
request to xi. In response, xi fully transfers its Contact List,
Neighbor List and Own Topics List to xN+1. The Contact
List also contains the private key of X which is symmetrically
encrypted with a user-provided passphrase. The Data Storage
is not transferred: It could be very large in size and not all
objects are relevant for xN+1 if it runs other applications.
Instead, we rely on the distribution strategy, its churn handling
(see Section IV-B) and xN+1’s retrieval choices during the
regular protocol cycle. This will take more time to transfer all
relevant objects to xN+1, but it is more efficient in terms of
traffic.

Finally, xN+1 publishes its own device information to
topic Devices@X, which informs {x1, . . . , xN} about the new
device. Since CX = SDevices@X , all contacts’ devices get
informed as well.

F. Adding contacts
If two users X and Y want to add each other mutually to

their Contact List, one device xi of user X has to pair with
a device yj of user Y . Pairing two devices by different users
requires the same mechanism as with two devices for the same
user, but less information is exchanged: Here, only information
about the user himself (such as the userId and his public key)
and the information about the own devices get exchanged. The
latter is a subset of the Neighbor List, which only contains the
entries that are mapped to the own userId.
xi enters Y into its Contact List and the devices

{y1, . . . , yM} into its Neighbor List. It publishes this infor-
mation to OwnContacts@X, which notifies all of X’s other
devices {x1, . . . , xN}. These also update their Contact and
Neighbor Lists, hence every device of X knows about the new
contact Y and his devices. Device yj proceeds in an analog
way.

IV. DISTRIBUTION STRATEGY

In this section we describe an approach for distributing
NOTIFY messages to target devices. It handles temporary
unavailability of devices via an additional message type named
STATE. This message type enables devices to detect missing
notifications and trigger retransmissions. We evaluate an im-
plementation of this strategy in Section V.

A. Procedure
0) When user X at device x1 publishes a new object from

an application to SocioPath, the procedure checks the
object’s topic t first. Let the TO be user O. If X 6= O, the
procedure continue with step 1. If X = O, it continues
with step 4.

1) Since X is not TO, the TO’s devices DO =: {o1 . . . oN}
have to be notified first. x1 looks up all known TO’s
devices in the Neighbor List and x1 sends a NOTIFY to
each of them.

2) Each notified device oi, 1 ≤ i ≤ |DO| checks in its Own
Topics List if X ∈ Pt. If true, oi has to retrieve the

x1

o11
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o21
4 z1
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y14
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Fig. 3: Distribution strategy procedure

object first. oi instantly sends a RETRIEVE request to x1.
If X /∈ Pt, oi discards the notification and the procedure
is aborted. Note that two devices oi and oj might decide
differently due to inconsistent Pt states.

3) The object is sent from x1 to the retrieving devices in
DO. The procedure is stalled on the retrieving devices
until the object was successfully transmitted.

4) The object is stored on a device of O, so it notifies all
target devices. It looks up St in the Own Topics List. For
each subscribed user S, it looks up all devices DS from
the Neighbor List and sends a notification to all of these
devices.

5) Each notified target device can now retrieve the object
from the TO’s device that sent the NOTIFY.

The procedure steps is depicted in Figure 3. Here, o1 decides
to retrieve the data object from a1, while the procedure is
aborted on o2 due to a different Pt state.

Note that target devices may receive multiple notifications
per published object. Such duplicates with same topic, objId
and timestamp are ignored.

B. Handling Churn

The procedure as described above assumes that all involved
devices are permanently available. To handle intermittent
unavailability (churn), each device can send a STATE RPC
request to another device in its Neighbor List. By doing so,
the requesting device asks the receiving device if it knows any
notifications the requesting device has missed. STATE requests
can be sent periodically or reactively, for the latter we assume
that the device can detect whether it can reach other devices
or is unavailable. Therefore it can detect when it returns from
a period of unavailability and sending a STATE request is
appropriate.

The content for each STATE request is defined by the target
device’s owner. Hence, one device sends a copy of the same
STATE request to all devices of the same user.

The device x1 of user X creates a STATE request for the
devices of user Y as follows: It iterates over its Data Storage
and collect all publishes with relevant topics, i.e. the topics
where
• X is subscribed to and Y is TO
• If X 6= Y : X is TO and Y ∈ Pt according to Own Topics

List on x1
For each of these publishes, a tuple <topic, objId, timestamp>
is hashed into a bloom filter [8]. The resulting payload of the



x1 y1

Fig. 4: Example STATE request/response process: Device x1
asks y1 if there are new or updated notifications and y1
responds accordingly. The only relevant topics here are T3@X
where user Y is allowed to publish and T1@Y where user X
is subscriber.

STATE request is the bloom filter plus a list of the relevant
topics. x1 sends this to all known devices of Y .

Each target device of Y , here y1, iterates over the topic
list from the request. For each topic, the tuples of all known
publishes from the Data Storage are generated as above. y1
checks if the received bloom filter contains each tuple. If a
check fails, y1 has detected a publish which x1 is unaware
of. In this case, y1 sends a NOTIFY about the corresponding
data item call to x1. x1 updates its Data Storage accordingly.
Figure 4 shows an example message exchange.

Note that this whole process is unidirectional, due to the
nature of bloom filters. y1 cannot detect if x1 has inserted
publishes into the bloom filter that y1 is unaware of. This has
to be detected by a STATE request from y1 for X .

V. EVALUATION

In this section, we evaluate an implementation of the
presented SocioPath protocol and distribution strategy. In this
evaluation, we focus on the distribution and retransmission of
NOTIFY and STATE messages: Instead of using RETRIEVE
requests, all objects are piggybacked in the notifications.

A. Test Setup

For the implementation, we use the overlay simulation
framework OverSim [9]. For each simulation run, we generate
a social graph based on the small-world graph generation
algorithm by Watts and Strogatz [10]. A test application
models typical instant messaging behaviour between users that
are connected in this social network [11]. The underlying
network is modeled by OverSim’s SimpleUnderlay underlay
abstraction, which is based on real Internet latency measure-
ments.

The following general parameters are invariant for each
simulation run: Each object is between 2 and 150 bytes size
to reflect the character count of a typical instant message.
On average, each device creates a message every 300s. All
simulation runs last 105 seconds. The overall number of users
is 200. Each user has on average 5 devices. An exponentially
distributed churn model triggers a device’s availability by
switching it off (deadtime) and on (lifetime) successively. The
average deadtime for each device is 1000 seconds.

The following parameters were evaluated. For each of the
following sections in this paper, one parameter is chosen as
a variable while the others keep their base values which are
chosen as follows:
• STATE messages are sent reactively.
• The average lifetime for each device is 104 seconds.
• Each user is subscribed to 15 topics.
With the mentioned parameters being variable, we measured

two performance indicators:
• Notification delivery CDF. It is difficult to define a

success or failure for a notification transmission in our
scenario: We accept and assume that devices can be
unavailable for a long time. For this reason, we chose
a empirical cumulative distribution function (CDF) that
maps the delay from application publish until arrival at
a target device on the x-axis. The CDF states that the
probability for a notification to arrive at a target device
in less than x seconds is f(x). Dead devices are not
simulated as switched off, instead they lack connectivity.
This means that a device still can generate publishes
during its deadtime, even if it cannot send them. This
time is part of the delivery latency.

• Bandwidth usage. The second indicator is the overall
sending bandwidth per device in bytes per second. This
includes all outgoing UDP traffic.

B. STATE sending intervals
STATE messages are our approach for handling churn. We

simulated both periodic and reactive behavior (see Section
IV-B). For periodic behavior, we expected a strong impact
of the average STATE sending interval (ssi) on both the
notification delivery probability and the bandwidth usage.
We expected reactive behavior to be the most effective and
efficient, since a device uses knowledge about its actual
availability here unlike in the periodic approach.

Figure 5a confirms these expectations: The reactive ap-
proach outperforms periodic STATE messages with ssi =
500s. For less frequent periodicities, the publish/receive delays
are considerably longer, since it takes longer until STATE
take care of missed notifications. For the reactive approach,
about 90% of the notifications are delivered in less than 1000
seconds. An ssi = 10000 seconds still results in about 83%
of the notifications being delivered in the same time, however
the low gradient of the graph indicates that most of these
were direct NOTIFY messages between online devices, with
the STATE messages having only a small effect.

Figure 6a shows the bandwidth usage (y-axis) for periodic
behavior i.r.t. different ssi values (x-axis). These are compared
with costs for reactive behavior as a baseline, which only
depends on the churn behavior of a device. Given the same
churn behavior, the reactive behavior has much lower costs.
Naturally, long intervals between STATE messages result in
lower costs than the baseline, but results in intolerable pub-
lish/receive delays as shown in Figure 5a.

C. Impact of churn
Next, we set STATE sending to reactive behavior and varied

the average lifetime of devices. Figure 5b shows the large
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Fig. 6: Bandwidth usage per node

impact of the lifetime: If a device’s average lifetime equals
the deadtime of 1000 seconds, it takes about 8000 seconds
to deliver all messages. With an average lifetime of 10000
seconds, the same amount is delivered in less than 5000
seconds. With an higher average lifetime, most notifications
are delivery instantly, indicated by the low gradient of the
corresponding graph for larger times. However, even under
heavy churn a delivery rate of 100% is reached due to the
STATE messages.

Due to the reactive STATE behavior, the bandwidth usage
drops with increasing lifetimes: Less STATE messages have to
be sent and the overall higher availability of devices results in
less resent NOTIFY messages.

D. Number of subscriptions
We varied the average number of subscriptions per user to

increase the load for devices. Figure 5c shows that our protocol
scales well i.r.t. publish/receive delays. More subscriptions
only have a minimal impact on the delay since messages are
delivered successively to more devices. Figure 6c shows that
the bandwidth usage per device rises about proportionally with
the average number of subscriptions. This is an intuitive result
which one would expect with any other overlay architecture
as well.

VI. APPLICATION USE CASES

In this section we describe three real-world application use
cases and how they apply to the presented design. For clarity,

we only describe the flow of notifications and assume that
each device has retrieved the object in question before it can
notify others.

A. File Sharing

Figure 7 depicts the following use case: Users X and Y
play in a band and have recently welcomed Z as new member.
X has created a topic for sharing song ideas via audio files
and therefore is the TO for SongIdeas@X. Z uses one of his
own devices, z1, to subscribe to that topic (step 1). x1 sees
Z ∈ ASongIdeas@X in the Own Topics List and enters Z into
SSongIdeas@X . Earlier, X added Y to PSongIdeas@X . On Y ’s
next publish of an audio file using y1 (step 2), only x1 gets
notified, since Y has no information that Z is also subscribed.
After retrieving the file (step 3), x1 sees Z in SSongIdeas@X

and notifies z1 and z2 (step 4).

B. Instant Messaging

In the file sharing use case, we have one or a few publishers
and possibly many subscribers. Instant Messaging works the
other way around: The recipient of the message is the sole
subscriber, but many contacts might be allowed to publish, i.e.
message him. In order for X to send a message to Y , X has to
publish to e.g. InstMsg@Y. Since only Y himself is subscriber
for this topic, X’s and Y ’s devices are the only target devices.
If Z wants to send a message to Y , he also publishes to
InstMsg@Y and again, Z’s and Y ’ devices are the only target
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Z

Fig. 7: File sharing use-case

devices and X is not involved in this communication process
whatsoever. Since most instant messages are small in size,
they might also be piggybacked in the obj field of the NOTIFY
request, thus eliminating all retrieval overhead.

C. Smart Home
Smart home privacy is a recent research field [12], which is

also applicable to our scenario. For example, a sensor which
monitors X’s fridge or mailbox could be another SocioPath-
enabled user device that belongs to X . It publishes to a topic
like FridgeContent@X. Here, X as the TO would be the
only subscriber, optionally he could let other family members
subscribe. However, he stays in full control about the access
to the sensor and the data distribution stays self-sufficient.

VII. RELATED WORK

Privacy in user-to-user-communication is a strong motiva-
tion for decentralized online social networks. In DHT-based
approaches ([4], [5], [13]), all data is spread evenly across the
participating nodes. If a node is responsible for maintaining a
data object, it also has access to application metadata tied to
the data object. However, a node’s responsibility is not defined
by its user ownership, but by a protocol-specific metric based
on nodeIds. Depending on the network size, this gives away
application metadata to a third party with a certain probability.
Approaches that rely on federated servers ([3], [14]) are self-
sufficient if and only if each user stores only his own data on
his own server. In SocioPath, a server with high availability is
helpful in a device pool but not required. In friend-to-friend
networks and Darknets, each overlay hop is between devices
that belong to users that trust each other. While this also
applies to SocioPath, the application scenarios are different:
In Turtle [15], search requests for e.g. a file are flooded across
friend links, obfuscating source and destination of a request.
In SocioPath, all objects are tied to a specific user who defines
the recipient group and all recipients are aware of this owner.

VIII. CONCLUSION

We presented SocioPath, a privacy-preserving protocol for
communication between multiple users in a closed group. Our
self-sufficient concept enforces exclusive end-to-end commu-
nication between devices that belong to these users. This keeps
all stored data and application metadata private from third

parties. SocioPath handles device heterogeneity by decoupling
data objects from notifications and keeping recurrent state ex-
changes small. Additionally, it offers a user-centric application
interface which abstracts from devices towards the user.

However, device heterogeneity and varying connectivity
are a major challenge in this scenario. We implemented and
evaluated a basic distribution strategy which showed promising
results, such as reliable delivery ratios and scalability with
higher demands. For future strategies we aim at awareness
and anticipation for device resources and user behaviour [6].
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