
PASTE: Protocol-agnostic Services & Transport
Enrichment with intermediate Companion nodes

Helge Backhaus
Institut für Telematik, KIT, Germany

backhaus@kit.edu

Abstract—The current socket API is one obstacle that hinders
adoption of new transport protocols like e.g. SCTP, MPTCP, or
DCCP. It requires an application to specify the desired transport
protocol at the time of implementation. The drawback of this
approach is: If new transport protocols are introduced, existing
applications need to be modified in order to support them.
Therefore applications should select abstract transport services
rather than specific protocols. We propose Protocol-agnostic
Services & Transport Enrichment (PASTE): An application-to-
network middle-ware that pushes the protocol selection below
the application layer based on the selected transport service. It
also handles other networking functionality commonly done by
applications, e.g., name-to-address resolution. To further enhance
the offered transport services we also introduce intermediate
Companion nodes within the network, to enrich different trans-
port services with added functionality like, e.g., in-network data
buffering or on-the-fly data compression.

I. INTRODUCTION

Today several new transport protocols like, e.g., SCTP,
MPTCP, or DCCP exist, offering applications a multitude of
transport services beyond those provided by TCP or UDP.
Despite being available on different platforms and operating
systems, none of these protocols has reached wide spread
adoption thus far. This is among other reasons due to today’s
socket API, which requires applications to select a specific
transport protocol at design time. Thus applications need to be
modified in order to benefit from newer transport protocols.
To improve this situation, we propose a Protocol-agnostic
Services & Transport Enrichment (PASTE) Layer. Figure 1
depicts a general PASTE-enabled network. Applications access

Companion
Directory-service

PASTE Knoten:

Name-resolution-
service

active
Companion

inactive
Companion

Router

API

Figure 1. PASTE-enabled network

the network via a name-based API, which is protocol inde-
pendent. Instead of specific protocols, applications are offered

different transport services based on transport characteristics,
which can be provided by applications. Names are used by
application instances to establish communication associations
among each other. Name-resolution is handled by PASTE via
a name resolution service. This enables the transparent usage
of different addressing schemes like, e.g., IPv4 and IPv6 today.

We also introduce intermediate nodes in the network, to
further enrich the offered transport services with added func-
tionality. These nodes, called Companions, are managed by
PASTE and can be inserted between two communicating
application instances, transparently for the application.

Companions can aid applications in achieving common data
transport tasks easier, e.g., by storing data in the network
upon encountering bandwidth bottlenecks on any side of a
connection, or by doing on-the-fly data compression. Thus
alleviating applications from buffering and re-transmitting
data, making their implementation easier. This can also enable
applications to better utilize available network resources by,
e.g., achieving a faster data upload than the receiving node
supports, a sender can complete a big data transfer faster. Any
node within the network can function as a Companion, by
running a PASTE instance. Companions register themselves
and their offered services at a Companion directory service,
which other PASTE node query for appropriate Companions
on demand at run time.

II. RELATED WORK

The following work is partially based on and build upon
other related work in this area.

A. Name-based sockets

Name-based sockets aimed at redesigning the socket API
to achieve a better decoupling of applications and network
protocols [1]. It does name-to-address resolution, and transport
selection based on proposed service names and port numbers
for services. It supports UDP, TCP, DCCP, and SCTP for trans-
ports and relieves applications from implementing features
such as multi-homing, mobility, or NAT traversal. Applications
still have to choose the desired service and thus protocol at
design-time though, which prevents them from employing the
different protocols in different environments.

B. Protocol-Independent Internet Transport API

General transport services such as reliable transport or in-
order delivery were extracted in [2] by analyzing UDP, TCP,



SCTP, and DCCP and their offered services. From that follows
an extended socket interface to make those general transport
services configurable via socket options. There is an ongoing
attempt to form an IETF TAPS Working Group, to continue
this work, with the desired result of an list of abstract transport
services and transport services characteristics, provided by
today’s available transport and congestion control protocols.

C. A future-proof application-to-network interface

In [3] we proposed a new name-based application-to-
network interface as part of the NENA Framework [4]. It aims
to reduce the necessary networking know-how at application-
level to foster independent evolutions of applications and the
network stack. To achieve this goal, networking functionality
currently done by the applications themselves is pushed down
below the API. The proposed interface aims at being simple
and intuitive for the application programmer, separating appli-
cation and networking concerns.

III. PASTE

Figure 2 shows the different parts and overall structure of
the PASTE Layer, which is located between the transport
and application layer. It manages connections via available
transport protocols, e.g., TCP, UDP, SCTP, etc. These are
established between PASTE instances and exposed to appli-
cations as communication associations.

Name-basedgAPI

ApplicationgA

AssociationgHandle

ApplicationgB

AssociationgHandle

Transportg&gNetworkgLayers

PASTE

Associations
Manager

Name
Resolution

Companion
Operations

CompaniongCache
&gLookup

Association
State

Association
State

Association
State

Association
State

Association
State

Association
State

Figure 2. Protocol-agnostic Services & Transport Enrichment Layer structure

A. Name Resolution

At the application level no network specific addresses or
locators are used. Applications only have to deal with URI-
based names to identify application instances and specify how
they can be reached. The actual name resolution is done in
PASTE.

B. Companion Operations

We refer to intermediate nodes involved in the fulfillment
of a data transport from one application instance to another as
Companions. Every node running the PASTE layer can serve
as a Companion. It is easily conceivable that routers at home,
user operated dedicated servers, or servers provided by an ISP
or another third party fulfill this task. For now we just assume

that they are placed at strategic points in the network and
highly available. There exist many possible usage scenarios
for Companions, like acting as ad-hoc message brokers, or
aiding with mobility.

PASTE’s Companion Operations part listens for incoming
Companion requests for all available transport protocols and
keeps track of resources for different offered Companion
functions. For instance available RAM or disk space for
caching and storing data, as well as available processing power
for on-the-fly data compression. Companions may offer one
or more of these services by registering them at a Companion
directory, so that end-systems running PASTE can find and use
appropriate Companions for different transport services. Two
simple scenarios, where Companions are used to compensate
for bandwidth bottlenecks or short outages of end-systems in
the network, are detailed in section IV.

C. Associations Manager & Association States

Within PASTE and at the application layer all data trans-
ports are represented as communication associations. These
are similar to connection handles from the socket API and
encapsulate all the state associated with a data transport, while
keeping track of individual transport protocol connection states
on all systems involved. Applications request an association
via the name-based API and receive an association handle to
communicate via its provided primitives. Association states
are created in the PASTE layer for each requested association
and managed by an associations manager. They consist of: An
association-ID, the local name of the initiator or source, the
initial name of the destination, the name of the current destina-
tion, e.g., some Companion, all names of previously involved
nodes, and the current connectivity status. The connectivity
status can be: Active – Currently data is transmitted via this
association. Suspended – No data is send or received on this
side, but there is still pending data for later. Unconfirmed
– No more data is send or expected on this side and the
association is regarded as half closed but there may still be
pending acknowledgments. Lost - The associations status is
unknown locally and none of the known participating nodes
has any information regarding the association-ID. This may
happen, if some kind of unrecoverable error occurs due to the
failure of a participating node.

D. Companions Lookup and Cache

Initially a Companion directory needs to be queried to
find Companions offering a certain functionality, each time
it is needed by a service. Known Companions are cached
afterwards and can also be exchanged with other end-systems
after that, so that Companions can also be obtained from
communication partners. Therefore a unique Companion ID
is stored, with all known connection information like: The
name where a Companion is reachable. Available transport
protocols, offered functions, and parameters like previously
experienced up- or down-link bandwidth, and encountered
latency. These parameters can aide in finding a better Com-
panion of a few available ones for a certain task.



E. Name-based API

The name-based API exposes transport services instead of
specific transport protocols to applications. In [5] we proposed
a method how protocol or rather service characteristics can
be described. Supported service characteristics can include
sequence preservation, varying degrees of reliability, or offer
low delay or high throughput. Alongside any connection
requests application instances pass desired service characteris-
tics. Based on the supplied characteristics a specific transport
protocol is chosen. Protocol independent sequence numbers
are added to application data units (ADUs), which are kept
intact. PASTE employs its own framing, in order to distin-
guish between ADUs and signaling messages related to, e.g.,
Companion handovers or acknowledgments. Therefore most
of the signaling can be done in-band over existing transport
protocol connections between application instances.

IV. COMPANION USE-CASE

Sender

ReceiverA B C

Companion

Sender

Receiver

Sender

Receiver

Companion

Figure 3. A simple file transfer involving three nodes.

The basic use-case involves three nodes, depicted in Fig-
ure 3. (A) A receiver binds itself to a known name. A
sender connects to the receiver requesting a fully reliable,
sequence preserving, error-checked transport service. Since
only TCP is available between the sender and receiver a TCP
connection is established by PASTE. An association state for
that connection is created, and an association handle returned
to the application. The sender then starts a big file transfer.
We assume the senders up-link is about an order of magnitude
higher than the receivers down-link. (B) The receiver wants to
go offline for some time. It might be a smartphone leaving a
wireless lan. Thus the association is suspended. The receiver’s
PASTE layer signals this via the TCP connection to the
sender’s PASTE layer and its association state switches to
suspended. Afterwards the TCP connection is closed. The
sender’s PASTE layer request a Companion, supporting data
caching, from the Companion directory service. Since SCTP
is available between the sender and returned Companion, the
sender’s PASTE layer establishes an SCTP connection and
sends an updated association state to the Companion. Data
meanwhile received from the application is cached by the
PASTE layer and now transmitted to the Companion. After-
wards the sender closes the association, leaving the association
state in the unconfirmed status, while the Companion’s
association state switches to suspended. The sender may
go offline now. (C) The receiver goes back online and the
file transfer application has a cached association ID, which
it uses to reanimate the suspended association. The last
known source is the sender. There are several possibilities now.

The sender may be online, its PASTE layer gets contacted by
the receiver’s and the receiver obtains an updated association
state and thus the Companion information. If the sender is
offline either the receiver’s PASTE layer may ping the sender,
or the Companion’s PASTE layer may ping the receiver. Once
the receiver’s PASTE layer knows about the Companion a TCP
connection is established and the remaining data is transmitted.
Depending on how the receiver and Companion found each
other, different unconfirmed association states need to get
cleaned up. If the receiver stays online long enough, after
suspending the association, its PASTE layer may even receive
the Companion information before tearing down the initial
TCP connection, thus freeing it from directly contacting the
sender again before resuming the download. Other possible
scenarios involve the sender requesting a Companion, without
the receiver going offline, just to better utilize its bigger up-
link to finish the file transfer earlier. Assuming the receiver
is a smartphone, a Companion supporting on-the-fly data
compression instead of caching may be used in that case,
provided that the receiver’s PASTE layer signals that it has
enough processing power available to decompress the data
locally.

V. CONCLUSION

This paper proposed application-to-network interface
changes and introduced PASTE, which allows to reduce the ap-
plications’ required knowledge about specific networking and
transport protocol details. Applications simply state desired
communication characteristics alongside connection requests
instead of directly selecting transport protocols at design time.
Network functionality like name-to-address resolution and
protocol selection are pushed down below the current socket
API, which fosters the introduction of new transport protocols
and services in the Internet without the need to modify existing
applications – and thus fosters innovations at the network-level
as well as at the application-level. In addition, the PASTE
layer located underneath the API, adds intermediate systems
– called Companions – on end to end paths, aiding applications
to achieve common data transport tasks easier, by alleviating
the need to implement common tasks in the application, while
at the same time enabling applications to better utilize the
locally available network resources.

REFERENCES

[1] J. Ubillos, M. Xu, Z. Ming, and C. Vogt, “Name-Based Sockets Archi-
tecture,” Internet Draft (draft-ubillos-name-based-sockets-03), Mar. 2010.

[2] M. Welzl, S. Jörer, and S. Gjessing, “Towards a Protocol-Independent
Internet Transport API,” in Fourth International Workshop on the Network
of the Future (FutureNet IV), 2011.

[3] D. Martin, H. Wippel, and H. Backhaus, “A Future-Proof Application-
to-Network Interface,” in Proceedings of the 2011 Second International
Conference on the Network of the Future (NoF 2011). IEEE, Nov. 2011.

[4] D. Martin et al., “Netlet-based Node Architecture Project Homepage.”
[Online]. Available: http://nena.intend-net.org/

[5] H. Backhaus, “Towards a Property and Requirement-based Application
Interface for Future Networks,” in 10th Würzburg Workshop on IP:
Joint ITG, ITC, and Euro-NF Workshop “Visions of Future Generation

Networks” (EuroView2010), Würzburg, Germany, Aug. 2010.


