
Experimental Evaluation of
BBR Congestion Control

Mario Hock, Roland Bless, Martina Zitterbart
Karlsruhe Institute of Technology

Karlsruhe, Germany
E-Mail: mario.hock@kit.edu, bless@kit.edu, zitterbart@kit.edu

Abstract—BBR is a recently proposed congestion control.
Instead of using packet loss as congestion signal, like many
currently used congestion controls, it uses an estimate of the
available bottleneck link bandwidth to determine its sending
rate. BBR tries to provide high link utilization while avoiding to
create queues in bottleneck buffers. The original publication of
BBR shows that it can deliver superior performance compared
to CUBIC TCP in some environments. This paper provides an
independent and extensive experimental evaluation of BBR at
higher speeds. The experimental setup uses BBR’s Linux kernel
4.9 implementation and typical data rates of 10 Gbit/s and
1 Gbit/s at the bottleneck link. The experiments vary the flows’
round-trip times, the number of flows, and buffer sizes at the
bottleneck. The evaluation considers throughput, queuing delay,
packet loss, and fairness. On the one hand, the intended behavior
of BBR could be observed with our experiments. On the other
hand, some severe inherent issues such as increased queuing
delays, unfairness, and massive packet loss were also detected.
The paper provides an in-depth discussion of BBR’s behavior in
different experiment setups.

I. INTRODUCTION

Congestion control protects the Internet from persistent
overload situations. Since its invention and first Internet-wide
introduction congestion control has evolved a lot [1], but is still
a topic of ongoing research [10], [15]. In general, congestion
control mechanisms try to determine a suitable amount of
data to transmit at a certain point in time in order to utilize
the available transmission capacity, but to avoid a persistent
overload of the network. The bottleneck link is fully utilized
if the amount of inflight data Dinflight matches exactly the
bandwidth delay product bdp = br · RTTmin , where br is the
available bottleneck data rate (i.e., the smallest data rate along
a network path between two TCP end systems) and RTTmin

is the minimal round-trip time (without any queuing delay).
A fundamental difficulty of congestion control is to calculate
a suitable amount of inflight data without exact knowledge
of the current bdp. Usually, acknowledgments as feedback
help to create estimates for the bdp. If Dinflight is larger than
bdp, the bottleneck is overloaded, and any excess data is filled
into a buffer at the bottleneck link or dropped if the buffer
capacity is exhausted. If this overload situation persists the
bottleneck becomes congested. If Dinflight is smaller than bdp,
the bottleneck link is not fully utilized and bandwidth is wasted.

Loss-based congestion controls (such as CUBIC TCP [12] or
TCP Reno [2]) use packet loss as congestion signal. They tend

to completely fill the available buffer capacity at a bottleneck
link, since most buffers in network devices still apply a tail
drop strategy. A filled buffer implies a large queuing delay
that adversely affects everyone’s performance on the Internet:
the inflicted latency is unnecessarily high. This also highly
impacts interactive applications (e.g., Voice-over-IP, multiplayer
online games), which often have stringent requirements to keep
the one way end-to-end delay below 100 ms. Similarly, many
transaction-based applications suffer from high latencies.

𝑏𝑏𝑏𝑏𝑏𝑏

𝑏𝑏𝑏𝑏𝑏𝑏 +
Bottleneck 
Buffer Size

RTT𝑚𝑚𝑚𝑚𝑚𝑚

Ro
un

d-
tr

ip
 T

im
e

De
liv

er
y 

Ra
te

Application
limited

Bandwidth limited Buffer
limited

Amount of inflight data

Bottleneck rate

Optimal 
operating point

Loss-based
congestion 
control 
operating point(A)

(B)

b𝑟𝑟

Dinflight

Fig. 1: Congestion control operating points: delivery rate and
round-trip time vs. amount of inflight data, based on [5]

Recently, BBR was proposed by a team from Google [5]
as new congestion control. It is called “congestion-based”
congestion control in contrast to loss-based or delay-based
congestion control. The fundamental difference in their mode
of operation is illustrated in fig. 1 (from [5]), which shows
round-trip time and delivery rate in dependence of Dinflight for
a single sender at a bottleneck. If the amount of inflight data
Dinflight is just large enough to fill the available bottleneck
link capacity (i.e., Dinflight = bdp), the bottleneck link is fully
utilized and the queuing delay is still zero or close to zero.
This is the optimal operating point (A), because the bottleneck
link is already fully utilized at this point. If the amount of
inflight data is increased any further, the bottleneck buffer gets
filled with the excess data. The delivery rate, however, does not
increase anymore. The data is not delivered any faster since the
bottleneck does not serve packets any faster and the throughput
stays the same for the sender: the amount of inflight data is
larger, but the round-trip time increases by the correspondingc© 2017 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media,
including reprinting /republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.
Accepted for publication at IEEE ICNP 2017.



amount. Excess data in the buffer is useless for throughput
gain and a queuing delay is caused that rises with an increasing
amount of inflight data. Loss-based congestion controls shift
the point of operation to (B) which implies an unnecessary
high end-to-end delay, leading to “bufferbloat” [11] in case
the buffer sizes are large. BBR now tries to shift the operating
point of congestion control to the left toward (A).

BBR requires sender-side modifications only and is al-
ready used in Google’s B4 wide-area network as well as at
Google.com and at YouTube servers in the Internet. Moreover,
the BBR team works toward an “End goal: improve BBR to
enable it to be the default congestion control for the Internet.”
[8]. Therefore, it is of interest to understand better how it
behaves in certain environments and situations. This paper
provides an independent and extensive experimental evaluation
of BBR at higher speeds. Section II provides an overview
of the BBR mechanisms and section III explains some of
BBR’s inherent properties that were observed in the conducted
experiments, too. The experimental setup (described in detail
in section IV) employs 10 Gbit/s and 1 Gbit/s bottleneck links
using the freely available Linux kernel 4.9 implementation.
The experiments described in section V vary the flows’ round-
trip times, the number of flows, and the bottleneck buffer
sizes. The evaluation considers achieved throughput, queuing
delay, packet losses, and fairness. The latter is investigated in
a homogeneous setting (i.e., among BBR flows) as well as in
a heterogeneous setting, here among BBR and CUBIC TCP
flows. Section VI briefly describes related work and section VII
summarizes the results of this evaluation.

II. OVERVIEW OF BBR

This section provides a brief overview of the main concepts
behind BBR, further details (e.g., built-in traffic policing de-
tection) are provided in [5], [7], [9]. The following description
assumes a single BBR flow at the bottleneck, the behavior of
multiple BBR flows is discussed in section III.

A coarse summary list of BBR features is as follows:

• BBR uses estimates for the available bottleneck data rate
br and the minimal round-trip time RTTmin to calculate
a path’s available bdp. The estimate for br is based on
a windowed maximum filter of the delivery rate that the
receiver experiences.

• A BBR sender controls its transmission rate sr with the
help of pacing and an estimated data rate br, i.e., it is
rate-based. It does not use a congestion window or ACK
clocking to control the amount of inflight data, but uses
an inflight data limit of 2bdp. [5] mentions delayed and
aggregated acknowledgments as reason for choosing 2bdp
instead of only one bdp.

• BBR probes for more bandwidth by increasing its sending
rate sr to 1.25sr0 for an RTT and directly reducing it
again to 0.75sr0, where sr0 is the current estimate of
the available data rate. The reduction aims at draining a
potential queue that was possibly created by the higher
rate.

• BBR uses a special ProbeRTT phase that tries to drain the
queue completely in order to measure RTTmin . Ideally,
all BBR flows enter this phase together after some time.

• BBR is neither delay-based nor loss-based and it ignores
packet loss as congestion signal. It also does not explicitly
react to congestion, whereas congestion window-based
approaches often use a multiplicative decrease strategy to
reduce Dinflight .

After this simplified overview, more details are provided
along its different operational phases: steady state operation
(including ProbeRTT to measure RTTmin as well as ProbeBW
to probe for more bandwidth) and startup behavior.

A. Steady State Operation

First, a BBR sender tries to determine the bdp of a
network path by getting estimates for br and RTTmin from
measurements (denoted as b̂r and R̂TTmin , respectively). It
uses TCP acknowledgments to calculate the observed delivery
rate as estimate b̂r and also to get an estimate of RTTmin

(in [5] this is called RTT prop – round-trip propagation time).
The delivery rate is calculated by dividing the amount of
delivered data (as indicated by acknowledgments) by the period
∆t in which the measurement took place. More specifically,
b̂r = max(delivery_ratet) ∀t ∈ [T − WB , T ], where WB

is typically six to ten RTTs [5] (the Linux kernel v4.9
implementation uses WB = 10RTTs). The delivery_ratet
is updated by every received acknowledgment.

In contrast to other approaches, BBR’s sending rate is
not determined by the so-called “ACK clocking”, but by the
estimate for the available bottleneck rate b̂r. It uses pacing for
every data packet at this rate in order to control the amount
of sent data, thus BBR is not a window-based congestion
control. However, it uses a cap of inflight data to 2b̂dp (with
b̂dp = b̂rR̂TTmin ) to cover “pathological cases” [5].

1) ProbeRTT: The required estimate R̂TTmin is calculated
by using a minimum filter over a window WR as R̂TTmin =
min(RTT t) ∀t ∈ [T −WR, T ] with WR = 10 s. In order to
measure RTTmin , BBR uses a periodically occuring phase
which is called ProbeRTT (the following explanation also
considers multiple flows). ProbeRTT is entered when R̂TTmin

has not been updated by a lower measured value for several
seconds (default: 10 s). In ProbeRTT , the sender abruptly limits
its amount of inflight data to 4 packets for max(RTT, 200ms)
and then returns to the previous state. This should drain the
queue completely under the assumption that only BBR flows
are present, so R̂TTmin = RTTmin since no queuing delay
exists.
RTTmin cannot be correctly measured in ProbeRTT if other

flows are creating a queuing delay. However, large flows that
enter ProbeRTT will drain many packets from the queue, so
other flows will update their R̂TTmin . This lets their R̂TTmin

expire at the same time so that these flows enter ProbeRTT
nearly simultaneously, which again may create a larger drain
effect, letting other flows see a new R̂TTmin and so on. This
synchronized behavior increases the probability to actually
measure RTTmin . It is important to note that R̂TTmin only



modifies the inflight cap of 2b̂dp, the sending rate is otherwise
determined just by the recent maximum measured delivery
rate.

2) ProbeBW Phase: BBR probes for more bandwidth by
increasing the sending rate by a certain factor (pacing_gain =
1.25) for an estimated RTTmin , then decreasing the sending
rate by pacing_gain = 0.75 in order to compensate a potential
excess of inflight data. Thus, if this excess amount filled
the bottleneck queue, the queue should be drained by the
same amount directly afterwards. Moreover, the sending rate
is varied in an eight-phase cycle using a pacing_gain of
5/4,3/4,1,1,1,1,1,1, where each phase lasts for an R̂TTmin . The
start of the cycle is randomly chosen with 3/4 being excluded as
initial phase. If the increased sending rate showed an increased
delivery rate, the newly measured maximum delivery rate b̂r is
immediately used as new sending rate, otherwise the previous
rate is maintained.

B. Startup Behavior

In its startup phase BBR nearly doubles its sending rate
every RTT as long as the delivery rate is increasing. This is
achieved by using a pacing_gain of 2/ ln 2 = 2.885 and an
inflight cap of 3bdp, i.e., it may create up to 2bdp of excess
queue. BBR tries to determine whether it has saturated the
bottleneck link by looking at the development of the delivery
rate. If for several (three) rounds attempts to double the sending
rate results only in a small increase of the delivery rate (less
than 25%), BBR has found the current limit of b̂r and exits the
startup phase. Then it enters a drain phase in order to reduce
the amount of excess data that may have led to a queue. It uses
the inverse of the startup’s gain to reduce the excess queue
and enters the ProbeBW phase once Dinflight = bdp holds.

III. ANALYSIS OF BBR’S BEHAVIOR

The following analysis is mainly based on the concepts
described in [5], [7], some details were taken from the
Linux implementation. While BBR’s mechanisms work well
for a single flow (confirmed by the results presented in
section V-A), the situation is different when multiple flows
share the bottleneck. BBR’s model in fig. 1 reflects the
aggregate behavior of all flows at the bottleneck, but not
the perspective of an individual sender if multiple flows are
traversing the bottleneck. As a result, each sender overestimates
the available bandwidth leading to a too high total Dinflight .
This analysis explains that BBR’s mechanisms lead to inherent
properties such as increased queuing delays, high packet losses,
and unfair flow rate shares in certain settings. These properties
were also observed in the evaluation results presented in
section V. The following analysis assumes that the flows’
sending rates are only limited by the congestion control. If the
sending rate is application-limited the observed behavior will
differ.

A. Multiple BBR Flows Steadily Overload the Bottleneck

A BBR flow i uses the observed maximum filtered delivery
rate b̂ri as its sending rate sri . BBR’s assumption is that b̂ri

of a flow i does not grow anymore beyond passing operating
point (A) in fig. 1, which does not necessarily hold if multiple
flows are sharing the bottleneck. In the latter case, an individual
BBR flow i does not estimate the bottleneck bandwidth br,
but its available share bri of the bottleneck bandwidth, with∑

i bri = br. The maximum filtered delivery rate b̂ri of flow
i serves as estimate of bri , which corresponds to the actual
delivery rate of flow i. However, there is an important difference
between

∑
i b̂ri and b̂r from the model described above.

While the condition b̂r ≤ br holds for a single flow, because
the observed delivery rate b̂r cannot be larger than br in this
particular case, it is possible (and often happens) that b̂ri > bri
and also even

∑
i b̂ri > br. Since BBR uses b̂ri as sending rate

sriof a flow i (i.e., sri := b̂ri ) it follows that
∑

i sri > br, i.e.,
all flows together send faster than the bottleneck rate, thereby
overloading the bottleneck.

So how come
∑

i b̂ri > br? This can be explained by the
combination of BBR’s rate-based approach, b̂ri being the
windowed maximum filter over bri , and the ProbeBW phase.

Let us assume that at some point in time, some of the
flows (let flow i be one of them) will start to probe for more
bandwidth, by sending with pg b̂ri (with pg:=5/4=1.25 being
the maximum probing gain) for an RTT. In case the bottleneck
input rate I =

∑
j srj is larger than br, every flow j will get

only srj · br/I through the bottleneck (the excess is either
queued or dropped). The delivery rate during probing will be
bri = pg b̂ri ·min(br/Ip, 1), with Ip being the bottleneck input
rate (including the increased rates of the probing flows). The
updated b̂′ri (after probing) satisfies

b̂′ri ≥ pg b̂ri ·min(br/Ip, 1). (1)

Now, if Ip < pgbr (i.e., the bottleneck overload is less than
25%), eq. (1) will evaluate to b̂′ri > b̂ri . This means each
probing flow i will actually measure a higher delivery rate.
This updates the maximum filter and will immediately be used
as new sri for at least further 10 RTTs.

Now we distinguish between the following initial states:
1)

∑
j b̂rj < br, i.e., the bottleneck is not overloaded yet. In

this case it follows that Ip < pgbr holds, because even
if all flows probe Ip ≤

∑
j pg b̂rj = pg

∑
j b̂rj < pgbr.

Consequently, in this case all probing flows can increase
their sending rates.

2)
∑

j b̂rj = br, i.e., the bottleneck is already fully utilized.
If all flows probe at the same time (or if there is only a
single flow) Ip = pgbr, thus b̂′ri = b̂ri , i.e., the probing
flows will not measure a higher delivery rate, but refresh
their current b̂ri in the maximum filter. If not all flows
probe simultaneously, Ip < pgbr follows and thus every
probing flow i will increase its sending rate after probing.
Thus, b̂′ri > b̂ri for each probing flow i and b̂′rl = b̂rl for
each non-probing flow l due to the maximum filter. Thus,
summing over all flows yields

∑
j b̂
′
rj > br.

3)
∑

j b̂rj > br, i.e., the bottleneck is already overloaded.
In this case Ip may be larger than pgbr. Still, b̂′rj ≥ brj



𝑏𝑏𝑏𝑏𝑏𝑏

𝑏𝑏𝑏𝑏𝑏𝑏 +
Bottleneck 
Buffer Size

RTT𝑚𝑚𝑚𝑚𝑚𝑚

Ro
un

d-
tr

ip
 T

im
e

De
liv

er
y 

Ra
te

Amount of inflight data

(B)

b𝑟𝑟

Operating 
point BBR(A)

Operating 
point
CUBIC TCP

BBR’s Inflight Cap
2∙ 𝑏𝑏𝑏𝑏𝑏𝑏

Dinflight

(a) Large buffer

𝑏𝑏𝑏𝑏𝑏𝑏

𝑏𝑏𝑏𝑏𝑏𝑏 +
Bottleneck 
Buffer Size

RTT𝑚𝑚𝑚𝑚𝑚𝑚

Ro
un

d-
tr

ip
 T

im
e

De
liv

er
y 

Ra
te

(A)

Amount of inflight data

Operating 
point BBR

(B)
Operating 
point CUBIC TCP

Dinflight

(b) Small buffer

Fig. 2: Observed operating points of BBR and CUBIC TCP with large and small buffer

due to the maximum filter. This means
∑

j b̂
′
rj ≥ br since∑

j brj = br. So even if some of the flows cannot increase
their sending rate during probing

∑
j b̂rj ≥ br still holds.

Note that even if
∑

j b̂rj > br, Ip depends on the sending
rate of the probing flow set and is not necessarily larger than
pgbr. From the reasoning above, it can be concluded that,
unless all flows probe at the same time, ∃X ∈ (br, pgbr) so
that Ip < pgbr even if

∑
i b̂ri = X . In other words: Flows can

increase their sending rate even if the bottleneck is already
overloaded.

To summarize:
∑

i b̂ri ≥ br can happen for sustained periods
of time with a tendency toward

∑
i b̂ri > br, if multiple BBR

flows share a bottleneck. Thus the input rate at the bottleneck is
larger than the bottleneck capacity. The excess data is queued at
the bottleneck if the bottleneck buffer is not already exhausted.
Consequently, due to the rate mismatch, the amount of inflight
data steadily increases and is not decreased until ProbeRTT .

B. Large Buffers – BBR Operates at its Inflight Cap

In large buffers the increase of inflight data is limited by the
inflight cap. Let Dcap

i be the inflight cap of flow i and assume
that all flows have the same and correctly measured R̂TTmin .
Then the amount of inflight data is bounded by

∑
i D

cap
i =

2 ·
∑

i b̂ri · R̂TTmin . As discussed in the previous section, it
is likely that

∑
i b̂ri ∈ [br, 1.25br), thus, 2bdp ≤

∑
i D

cap
i <

2.5bdp. Since multiple BBR flows steadily increase the amount
of inflight data, as shown in section III-A it can be expected that
the inflight cap is regularly reached. This means that multiple
BBR flows typically create a queuing delay of about one to
1.5 times the RTT. Experimental results shown in section V
confirm this expectation. Thus, if multiple BBR flows share a
bottleneck, BBR does not operate at point (A), as illustrated
in fig. 2a.

If flows with different RTTs share a bottleneck, a flow i
with a larger RTT than a flow j will usually get a larger rate
share than j. Since Dcap

i depends on the RTT, Dcap
i > Dcap

j

follows. Usually, about one half of the allowed inflight data
is “on the wire”, the other half can potentially be queued at

the bottleneck. This means flow i can usually queue more data
at the bottleneck than flow j before reaching the inflight cap.
This directly results in a larger rate share for i, which further
increases Dcap

i .

C. Small Buffers – Massive Packet Loss

If the bottleneck buffer is smaller than a bdp (note that
slightly smaller suffices, it does not have to be shallow) the
bottleneck buffer is exhausted before the inflight cap is reached.
This means point (B) is reached and packet loss occurs (fig. 2b).
In order to handle non-congestion related packet loss, BBR
does not back off if packet loss is detected. But in this case the
packet loss is caused by congestion. Since BBR has no means
to distinguish congestion related from non-congestion related
loss, point (B) is actually crossed, which can lead to massive
amounts of packet loss, as shown in section V-E. If flows
with loss-based congestion control (e.g., CUBIC TCP) share
the same bottleneck, they interpret the sustained high packet
loss rates (correctly) as a sign of massive congestion and back
off to very low transmission rates. Furthermore, [5] contains
no explicit statement regarding congestion collapse prevention.
In order to assess this issue, the loss recovery mechanisms of
BBR have to be investigated further. But this is out of scope
of this paper.

IV. TESTBED SETUP

Sender DPDK-Switch HP 5920 Receiver

3 * 
10 Gbit/s

3 * 
10 Gbit/s

10 Gbit/s

1 Gbit/s 

Fig. 3: Testbed setup

In order to evaluate BBR experimentally, we set up a
physical testbed. The testbed has two configurations, 1) with
a 10 Gbit/s bottleneck, and 2) with a 1 Gbit/s bottleneck, as
shown in fig. 3. The 10 Gbit/s configuration has the commonly



used dumbbell topology. It consists of two 10 Gbit/s switches,
a sender and a receiver, both equipped with three 10 Gbit/s
interfaces. Due to interface speed limitations we could not use
the same set-up to get a 1 Gbit/s bottleneck. Therefore, the
1 Gbit/s configuration uses a slightly modified topology with
dedicated 1 Gbit/s NICs. If the 1 Gbit/s is enabled the 10 Gbit/s
link is disabled and vice versa.

A DPDK-based software switch1 was used at the bottleneck
link. It provides detailed control over its buffers and also
contains a delay emulator that was used to experiment with
different RTTs. The emulator added artificial delay only in the
direction to the sender, i.e., merely the ACKs were delayed.
Since BBR does not use one-way delay measurements this
does not influence the results. The Linux kernel module netem
was not used as delay emulator, since it produced severe side
effects like delay jitter and packet loss at speeds of 10 Gbit/s.

Sender, receiver, and the DPDK switch run on Ubuntu 16.04
and are equipped with two Intel Xeon E5-2630 v3 CPUs and a
4-port Intel X710 10 Gbit/s NIC. For the 1 Gbit/s configuration,
the DPDK switch and the receiver also have a dual-port Intel
82571EB Gigabit Ethernet Controller. In order to support
BBR, the sender uses Linux kernel version 4.9, the other
servers use version 4.4. At the sender, we enabled the queuing
discipline “fq” for all network interfaces that were used for
BBR flows. CUBIC TCP flows were always sent over different
interfaces than BBR flows; “fq” was not enabled for flows of
CUBIC TCP. BBR relies on “fq” to work properly, since it
implements its packet pacing feature. While BBR determines
the pacing rate, the actual pacing of the outgoing packets
is carried out by “fq”. Traffic is generated with iperf3.
RTT, CWnd and goodput measurements are collected at the
sender with an open source tool2 that is based on the kernel
module tcpprobe; tcpprobe gives access to internal TCP
state information of the Linux kernel. Throughput values are
collected with another open source tool3 that evaluates the
counters of the network interfaces. Since we observed packet
loss in the end system at speeds around 10 Gbit/s that were
caused by a buffer overflow in the “RX ring” (between NIC
and operating system), we increased the size of the RX rings
of the 10 Gbit/s NICs at the receiver from 512 to 4096. This
prevents the packet loss but increases the delay jitter induced
by the end system. We also increased the maximum values for
auto-tuning of TCP flow control, since the standard values are
too small for 10 Gbit/s flows, at the used RTTs.

At the bottleneck, we used three different buffer sizes:
• 200 MByte: =̂ 160 ms queuing delay at 10 Gbit/s, when

fully occupied.
• 20 MByte: =̂ 16 ms queuing delay at 10 Gbit/s, 160 ms at

1 Gbit/s
• 2 MByte: =̂ 16 ms queuing delay at 1 Gbit/s.

In the following we will also denote this buffer sizes as “large”
and “small”, depending on whether they produce 160 ms or

1https://git.scc.kit.edu/TM/DPDK_AQM_Switch
2https://git.scc.kit.edu/CPUnetLOG/TCPlog
3https://git.scc.kit.edu/CPUnetLOG/CPUnetLOG

16 ms queuing delay, respectively. For RTTmin =20 ms, this
corresponds to 8bdp for large and 0.8bdp for small buffers.

For experiments with no more than three flows, each flow
is sent over a different network interface. Otherwise, the
flows are reasonably distributed among the interfaces (i.e.,
equally distributed, if possible; different interfaces for BBR
and CUBIC TCP). In all of our experiments, the start times of
the flows are chosen in a way that the time difference between
two start times is no multiple of 10 s. Since BBR usually enters
ProbeRTT every 10 s, this would induce unintended bias.

We repeated each experiment at least five times. In the
following, we always show the results of a representatively
chosen single run for clarity.

V. EVALUATION

A. BBR – Intended Behavior
The intended behavior of BBR can be nicely observed if

only a single flow is active at the bottleneck link. The results
of a corresponding experiment are depicted in fig. 4 with
respect to throughput and RTT. The BBR flow can fully utilize
the provided link capacity. However, throughput drops occur
regularly (every 10s), caused by the ProbeRTT phase. After
startup, the RTT increases up to 60 ms, corresponding to the
inflight cap of three bdp during startup. After that the RTT is
regularly increased to 25 ms – 27 ms during the ProbeBW phase.
When pacing_gain = 1.25 a queue builds up at the bottleneck
that is drained in the subsequent phase with pacing_gain =
0.75. The ProbeRTT phase can also be well observed in fig. 4c
around second 10.5 by the missing RTT spike. The minimal
measured RTT is slightly above the delay of 20 ms which is
induced by the delay emulator. The difference is the actual
delay induced by the propagation delay in the testbed as well
as by the processing times of the end systems and the switch.

B. Multiple BBR Flows
BBR shows a different behavior if multiple flows share the

same bottleneck link. Figure 5 depicts results of experiments
with 1, 2, 4, and 6 BBR flows at the bottleneck. It can be
observed that the RTT is increased to a value around 40 ms
most of the time (as explained in sections III-A and III-B). The
peak at the beginning is caused by the startup phase of BBR.
In the experiments with 4 and 6 flows, the peak is significantly
larger and longer lasting than in the case of one or two flows.
If a BBR flow starts up when the RTT is already increased, the
flow overestimates RTTmin and, thus, the bdp. Consequently,
the inflight cap is set to a larger value than three times the
(actual) bdp, causing larger queuing delays.

C. Impact of RTTmin

As just seen, multiple BBR flows are not able to drain the
buffer as one would have expected. In fact, the RTT doubles
if (at least) two BBR flows with the same RTTmin share a
bottleneck as clearly shown in fig. 6. Here, RTTmin is varied
from 5 ms to 80 ms, causing effective RTTs of about 10 ms
to 160 ms. This doubling of the RTT corresponds to BBR’s
inflight cap of two bdp (as explained in section III-B), so
multiple BBR flows reach this inflight cap most of the time.



0 10 20 30 40 50 60

Time (s)

0 

200M 

400M 

600M 

800M 

1G 

1.2G 

1.4G 

1.6G 

T
h
ro

u
g
h
p
u
t 

(B
it

/s
)

Flow 1

(a) Throughput

0 10 20 30 40 50 60

Time (s)

0

10

20

30

40

50

60

R
T
T
 (

m
s)

Flow 1

(b) RTT

9.5 10.0 10.5 11.0 11.5

Time (s)

0

5

10

15

20

25

30

R
T
T
 (

m
s)

Flow 1

(c) RTT (zoomed-in)

Fig. 4: A single BBR flow with 1 Gbit/s bottleneck

0 50 100 150 200 250 300

Time (s)

0

50

100

150

200

R
T
T
 (

m
s)

Flow 1

(a) 1 flow

0 50 100 150 200 250 300

Time (s)

0

50

100

150

200

R
T
T
 (

m
s)

Flow 1

(b) 2 flows

0 50 100 150 200 250 300

Time (s)

0

50

100

150

200

R
T
T
 (

m
s)

Flow 1

(c) 4 flows

0 50 100 150 200 250 300

Time (s)

0

50

100

150

200

R
T
T
 (

m
s)

Flow 1

(d) 6 flows

Fig. 5: RTT of different numbers of competing BBR flows at a 1 Gbit/s bottleneck (large buffer), RTTmin =20 ms

0 50 100 150 200 250 300

Time (s)

0

50

100

150

200

R
T
T
 (

m
s)

Flow 1

(a) 5 ms

0 50 100 150 200 250 300

Time (s)

0

50

100

150

200

R
T
T
 (

m
s)

Flow 1

(b) 20 ms

0 50 100 150 200 250 300

Time (s)

0

50

100

150

200

R
T
T
 (

m
s)

Flow 1

(c) 40 ms

0 50 100 150 200 250 300

Time (s)

0

50

100

150

200

R
T
T
 (

m
s)

Flow 1

(d) 80 ms

Fig. 6: RTT of two BBR flows at a 10 Gbit/s bottleneck (large buffer), comparison of different RTTmin

D. Intra-protocol Fairness

Multiple BBR flows with the same RTTmin can achieve
a reasonable fair rate share in some of the tested scenarios.
However, our experiments show that a sustained suppression
of individual flows is also possible. Figure 7 shows the
goodput of six BBR flows that are successively started (starting
points: 0 s, 23 s, 31 s, 38 s, 42 s, 47 s) in scenarios that varied
data rates (10 Gbit/s, 1 Gbit/s) and buffer sizes (large, small).
Here, “goodput” denotes payload data transmitted by TCP,
excluding retransmissions. In the scenario with a 10 Gbit/s
bottleneck and small buffers (shown in fig. 7b) two of the
flows get a significantly larger rate share than the remaining
four flows. These flows, in turn, only achieve very small rates,
for prolonged timespans. This behavior could be observed in
all repetitions of this experiment. Section III-C suggests that
fairness can be quite random until inflight caps are reached.

In the other scenarios all six flows get similar rate shares to
some extent. However, (almost) identical rate shares are usually

not achieved. As shown in fig. 7c, rate differences of around
100 Mbit/s between individual flows are not uncommon.

E. Packet Loss

While fig. 7 shows the goodput of the six BBR flows,
fig. 8 shows the outgoing data rate of the three network
interfaces (i/f 1, i/f 2, i/f 3) of the sender (including headers
and retransmissions). In addition to that, the sum of these data
rates is also shown. Since there are less interfaces available than
flows, two flows are sent via each interface. It can be seen that
this sum is way above the bottleneck capacity, especially for
small buffer sizes (10 Gbit/s in fig. 8b, 1 Gbit/s in fig. 8d). This
leads to a severe network overload and results in an enormous
amount of retransmissions (more than 16 million packets) due
to packet loss, see fig. 12a. For comparison we conducted the
same experiment with CUBIC TCP. As shown in fig. 9, the
total output rate is close to 10 Gbit/s and 1 Gbit/s, respectively.



0 50 100 150 200 250 300

Time (s)

0

1000

2000

3000

4000

5000

6000
G

o
o
d
p
u
t 

(M
b
it

/s
)

(a) 10 Gbit/s large buffer

0 50 100 150 200 250 300

Time (s)

0

1000

2000

3000

4000

5000

6000

G
o
o
d
p
u
t 

(M
b
it

/s
)

(b) 10 Gbit/s small buffer

0 50 100 150 200 250 300

Time (s)

0

100

200

300

400

500

600

G
o
o
d
p
u
t 

(M
b
it

/s
)

(c) 1 Gbit/s large buffer

0 50 100 150 200 250 300

Time (s)

0

100

200

300

400

500

600

G
o
o
d
p
u
t 

(M
b
it

/s
)

(d) 1 Gbit/s small buffer

Fig. 7: Goodput of six BBR flows in different scenarios, RTTmin =20 ms

0 50 100 150 200 250 300

Time (s)

0 

2G 

4G 

6G 

8G 

10G 

12G 

14G 

16G 

T
h
ro

u
g
h
p
u
t 

(B
it

/s
)

Total

i/f 1

i/f 2

i/f 3

(a) 10 Gbit/s large buffer

0 50 100 150 200 250 300

Time (s)

0 

2G 

4G 

6G 

8G 

10G 

12G 

14G 

16G 

T
h
ro

u
g
h
p
u
t 

(B
it

/s
)

Total

i/f 1

i/f 2

i/f 3

(b) 10 Gbit/s small buffer

0 50 100 150 200 250 300

Time (s)

0 

200M 

400M 

600M 

800M 

1G 

1.2G 

1.4G 

1.6G 

T
h
ro

u
g
h
p
u
t 

(B
it

/s
)

Total

i/f 1

i/f 2

i/f 3

(c) 1 Gbit/s large buffer

0 50 100 150 200 250 300

Time (s)

0 

200M 

400M 

600M 

800M 

1G 

1.2G 

1.4G 

1.6G 

T
h
ro

u
g
h
p
u
t 

(B
it

/s
)

Total

i/f 1

i/f 2

i/f 3

(d) 1 Gbit/s small buffer

Fig. 8: BBR – Outgoing data of sender interfaces (same experiments as in fig. 7)

0 50 100 150 200 250 300

Time (s)

0 

2G 

4G 

6G 

8G 

10G 

12G 

14G 

16G 

T
h
ro

u
g
h
p
u
t 

(B
it

/s
)

Total

i/f 1

i/f 2

i/f 3

(a) 10 Gbit/s large buffer

0 50 100 150 200 250 300

Time (s)

0 

2G 

4G 

6G 

8G 

10G 

12G 

14G 

16G 

T
h
ro

u
g
h
p
u
t 

(B
it

/s
)

Total

i/f 1

i/f 2

i/f 3

(b) 10 Gbit/s small buffer

0 50 100 150 200 250 300

Time (s)

0 

200M 

400M 

600M 

800M 

1G 

1.2G 

1.4G 

1.6G 

T
h
ro

u
g
h
p
u
t 

(B
it

/s
)

Total

i/f 1

i/f 2

i/f 3

(c) 1 Gbit/s large buffer

0 50 100 150 200 250 300

Time (s)

0 

200M 

400M 

600M 

800M 

1G 

1.2G 

1.4G 

1.6G 

T
h
ro

u
g
h
p
u
t 

(B
it

/s
)

Total

i/f 1

i/f 2

i/f 3

(d) 1 Gbit/s small buffer

Fig. 9: CUBIC TCP – Outgoing data of sender interfaces (same setting as in fig. 8)

Still around 2 000 and 12 000 retransmissions occur. But this is
several orders of magnitude lower than those caused by BBR.

With large buffers, the number of retransmissions of the
BBR flows is significantly lower than with small buffers. The
reason for this was already given in section III-B and illustrated
in fig. 2: The inflight cap limits the buffer utilization to around
one bdp. With large buffers this avoids packet loss most of the
time (except during the startup phases of the BBR flows). But
even with 0.8bdp as “small buffer” size, the inflight cap is too
large to avoid a persistent overload of the bottleneck buffer.
In contrast to CUBIC TCP and most other TCP congestion
controls, BBR ignores packet loss as a congestion signal.
However, in the just described experiments, the huge amount
of packet loss is clearly a result of persisting congestion.

The amount of inflight data can be indirectly seen by the
RTT of the flows. If there is more than one bdp of data in flight,
the RTT increases due to queuing delay. Figure 10 shows the
RTTs of flow 1 in the respective experiments with large buffers.
Since all flows experience about the same queuing delay, we
only show the RTT of a single flow for clarity. CUBIC TCP
regularly fills the bottleneck buffer up to exhaustion and backs

off afterwards. BBR increases the RTT to a similar amount
during startup, after that the RTT is reduced to about twice
RTTmin . This means that about one bdp is queued in the
bottleneck buffer.

With small buffers, operating point (B) (cf. fig. 2) lies further
to the left and thus CUBIC TCP’s operating point as well
(illustrated by the plots of the RTT in figs. 11b and 11d). Again,
CUBIC TCP fills the bottleneck buffer up to exhaustion and
backs off afterwards. With BBR the observed RTT is almost
constantly at the maximum level, just below 40 ms (20 ms delay
emulator + 16 ms maximum queuing delay + actual delay, i.e.,
processing times, etc.). Since the size of the small buffer is
less than one bdp, the buffer overflows before the inflight
cap is reached. This means that BBR’s operating point is at
least at (B). Additionally, the large number of retransmissions
(fig. 12) and the increased total sending rate (figs. 8b and 8d)
that is constantly significantly above the bottleneck bandwidth
(10 Gbit/s / 1 Gbit/s, respectively) confirm that operating point
(B) is actually crossed.



0 50 100 150 200 250 300

Time (s)

0

50

100

150

200
R

T
T
 (

m
s)

BBR 1

(a) 10 Gbit/s BBR

0 50 100 150 200 250 300

Time (s)

0

50

100

150

200

R
T
T
 (

m
s)

CUBIC 1

(b) 10 Gbit/s CUBIC TCP

0 50 100 150 200 250 300

Time (s)

0

50

100

150

200

R
T
T
 (

m
s)

BBR 1

(c) 1 Gbit/s BBR

0 50 100 150 200 250 300

Time (s)

0

50

100

150

200

R
T
T
 (

m
s)

CUBIC 1

(d) 1 Gbit/s CUBIC TCP

Fig. 10: RTTs corresponding to figs. 8 and 9 – large buffer, RTTmin =20 ms

0 50 100 150 200 250 300

Time (s)

0

10

20

30

40

50

R
T
T
 (

m
s)

BBR 1

(a) 10 Gbit/s BBR

0 50 100 150 200 250 300

Time (s)

0

10

20

30

40

50
R

T
T
 (

m
s)

CUBIC 1

(b) 10 Gbit/s CUBIC TCP

0 50 100 150 200 250 300

Time (s)

0

10

20

30

40

50

R
T
T
 (

m
s)

BBR 1

(c) 1 Gbit/s BBR

0 50 100 150 200 250 300

Time (s)

0

10

20

30

40

50

R
T
T
 (

m
s)

CUBIC 1

(d) 1 Gbit/s CUBIC TCP

Fig. 11: RTTs corresponding to figs. 8 and 9 – small buffer, RTTmin =20 ms

10G large 10G small 1G large 1G small
100

101

102

103

104

105

106

107

108

R
e
tr

a
n
sm

it
s 

(l
o
g
 s

ca
le

)

32,136

16,109,114

52,451

2,353,045

(a) BBR

10G large 10G small 1G large 1G small
100

101

102

103

104

105

106

107

108

R
e
tr

a
n
sm

it
s 

(l
o
g
 s

ca
le

)

14,826 12,157 6,444
2,288

(b) CUBIC TCP

Fig. 12: Retransmissions (six flows)

F. Fairness among Flows with Different RTTs

The fairness among BBR flows with different RTTs strongly
depends on the bottleneck buffer size. Figure 13 shows the
throughput of two BBR flows with different RTTmin (20 ms
vs. 40 ms) that compete at a bottleneck in different scenarios:
10 Gbit/s / 1 Gbit/s bottleneck bandwidth, large/small buffers.
With small buffers (figs. 13b and 13d) flow 1 (smaller RTTmin )
gets more bandwidth than flow 2. Still, flow 2 gets around 40%
of the bottleneck bandwidth. As discussed above, both flows
are most likely not limited by their inflight cap, due to the
small buffer size. With large buffers (figs. 13a and 13c) flow 2
(larger RTTmin ) gets significantly more bandwidth than flow 1,
because the buffer size is large enough so that both flows are
most likely limited by their inflight cap (cf. section III-B). In
this case, both flows can put one bdp into the bottleneck buffer.
Due to the larger RTTmin , the bdp of flow 2 is larger as well.
This corresponds to a larger share of data in the bottleneck
buffer, thereby resulting in a larger throughput for flow 2, as
documented in figs. 13a and 13c.

Additional experiments with three competing flows at the
bottleneck (RTTmin : 20 ms, 40 ms, 80 ms) show the severity of
the problem. In figs. 14a and 14c, flow 1 (20 ms RTTmin ) is
almost entirely suppressed by the other two flows. Flow 3
(80 ms RTTmin ) gets more than 80% of the bottleneck
bandwidth. In small buffers, flows are not limited by their
inflight cap in this particular case, so different RTTmin have
not much impact on unfairness. This, however, leads to a large
and persisting overload of the bottleneck, resulting in packet
loss. Again, figs. 14b and 14d show that the total output rate
of the senders is significantly above the bottleneck bandwidth.

G. Inter Protocol Fairness with CUBIC TCP
In addition to the experiments above, which focused on

BBR, we also conducted experiments on the interplay between
BBR and CUBIC TCP. The fairness between a BBR flow and
CUBIC TCP also depends on the size of the bottleneck buffer.
Figures 15a and 15b show the throughput of one BBR (start: 0 s,
end: 300 s) and one CUBIC TCP flow (start: 23 s, end: 223 s)
that compete at a (10 Gbit/s / 1 Gbit/s) bottleneck with a large
buffer. As loss-based congestion control, CUBIC TCP tends to
fill the bottleneck buffer up to exhaustion, no matter how big
the buffer is, whereas BBR limits its inflight data to two bdp.
This means, the larger the bottleneck buffer, the larger the rate
share of CUBIC TCP. However, since CUBIC TCP produces
long lasting standing queues, a competing BBR flow may not
be able to see the actual RTTmin , even during its ProbeRTT
phase. During ProbeRTT the BBR flow reduces its own inflight
data close to zero, however, the CUBIC TCP flow does not.
Thus, the bottleneck buffer is usually not drained completely.
In this case, the BBR flow assumes a higher RTTmin and,
thus, also increases the inflight cap to a larger value. Both
behaviors can be seen in figs. 15a and 15b. Occasionally, BBR



0 50 100 150 200 250 300

Time (s)

0 

2G 

4G 

6G 

8G 

10G 

12G 

14G 

16G 
T
h
ro

u
g
h
p
u
t 

(B
it

/s
)

Total

20ms

40ms

(a) 10 Gbit/s large buffer

0 50 100 150 200 250 300

Time (s)

0 

2G 

4G 

6G 

8G 

10G 

12G 

14G 

16G 

T
h
ro

u
g
h
p
u
t 

(B
it

/s
)

Total

20ms

40ms

(b) 10 Gbit/s small buffer

0 50 100 150 200 250 300

Time (s)

0 

200M 

400M 

600M 

800M 

1G 

1.2G 

1.4G 

1.6G 

T
h
ro

u
g
h
p
u
t 

(B
it

/s
)

Total

20ms

40ms

(c) 1 Gbit/s large buffer

0 50 100 150 200 250 300

Time (s)

0 

200M 

400M 

600M 

800M 

1G 

1.2G 

1.4G 

1.6G 

T
h
ro

u
g
h
p
u
t 

(B
it

/s
)

Total

20ms

40ms

(d) 1 Gbit/s small buffer

Fig. 13: Two BBR flows with different RTTmin (20 ms, 40 ms)

0 50 100 150 200 250 300

Time (s)

0 

2G 

4G 

6G 

8G 

10G 

12G 

14G 

16G 

T
h
ro

u
g
h
p
u
t 

(B
it

/s
)

Total

20ms

40ms

80ms

(a) 10 Gbit/s large buffer

0 50 100 150 200 250 300

Time (s)

0 

2G 

4G 

6G 

8G 

10G 

12G 

14G 

16G 
T
h
ro

u
g
h
p
u
t 

(B
it

/s
)

Total

20ms

40ms

80ms

(b) 10 Gbit/s small buffer

0 50 100 150 200 250 300

Time (s)

0 

200M 

400M 

600M 

800M 

1G 

1.2G 

1.4G 

1.6G 

T
h
ro

u
g
h
p
u
t 

(B
it

/s
)

Total

20ms

40ms

80ms

(c) 1 Gbit/s large buffer

0 50 100 150 200 250 300

Time (s)

0 

200M 

400M 

600M 

800M 

1G 

1.2G 

1.4G 

1.6G 

T
h
ro

u
g
h
p
u
t 

(B
it

/s
)

Total

20ms

40ms

80ms

(d) 1 Gbit/s small buffer

Fig. 14: Three BBR flows with different RTTmin (20 ms, 40 ms, 80 ms)

0 50 100 150 200 250 300

Time (s)

0 

2G 

4G 

6G 

8G 

10G 

12G 

14G 

16G 

T
h
ro

u
g
h
p
u
t 

(B
it

/s
)

Total

BBR

CUBIC

(a) 10 Gbit/s – throughput

0 50 100 150 200 250 300

Time (s)

0 

200M 

400M 

600M 

800M 

1G 

1.2G 

1.4G 

1.6G 

T
h
ro

u
g
h
p
u
t 

(B
it

/s
)

Total

BBR

CUBIC

(b) 1 Gbit/s – throughput

Fig. 15: BBR vs. CUBIC TCP (large buffer)

0 50 100 150 200 250 300

Time (s)

0 

2G 

4G 

6G 

8G 

10G 

12G 

14G 

16G 

T
h
ro

u
g
h
p
u
t 

(B
it

/s
)

Total

BBR

CUBIC

(a) 10 Gbit/s

0 50 100 150 200 250 300

Time (s)

0 

200M 

400M 

600M 

800M 

1G 

1.2G 

1.4G 

1.6G 

T
h
ro

u
g
h
p
u
t 

(B
it

/s
)

Total

BBR

CUBIC

(b) 1 Gbit/s

Fig. 16: BBR vs. CUBIC TCP (small buffer)

gets a nearly fair share of the bottleneck bandwidth, at other
times, most of the bottleneck bandwidth is occupied by the
CUBIC TCP flow.

0 50 100 150 200 250 300

Time (s)

0 

2G 

4G 

6G 

8G 

10G 

12G 

14G 

16G 

T
h
ro

u
g
h
p
u
t 

(B
it

/s
)

Total

BBR 1

CUBIC 1+2

BBR 2

(a) 10 Gbit/s

0 50 100 150 200 250 300

Time (s)

0 

200M 

400M 

600M 

800M 

1G 

1.2G 

1.4G 

1.6G 

T
h
ro

u
g
h
p
u
t 

(B
it

/s
)

Total

BBR 1

CUBIC 1+2

BBR 2

(b) 1 Gbit/s

Fig. 17: 2 BBR vs. 2 CUBIC TCP (small buffer)

With small buffers, BBR gets a vastly bigger rate share than
CUBIC TCP (see fig. 16). However, there is a fundamental
difference in the behavior depending on whether CUBIC TCP
competes against a single or against multiple BBR flows.
Therefore, we conducted further experiments with two BBR

flows and two CUBIC TCP flows (shown in fig. 17). The
experiments started the same way as the previous one. The ad-
ditional flows were started at second 98 (BBR) and second 123
(CUBIC TCP), respectively. Once the two BBR flows are active,
the throughput of the CUBIC TCP flow(s) drops close to zero.
If the bottleneck buffer is smaller than one bdp, two competing
BBR flows create large amounts of packet loss thereby also
affecting the CUBIC TCP flows. While CUBIC TCP treats them
as congestion signal and backs off, BBR keeps sending at a
high rate, completely suppressing the CUBIC TCP flows.

VI. RELATED WORK

BBR was originally described in [5], [7] and updates were
presented by presentations [6], [8]. Recently, an Internet-
Draft [9] complemented the description. Evaluation results
shown in [5], [7] consist of scenarios with 10 Mbit/s and
100 Mbit/s bottleneck link bandwidth, RTTs are mostly 40 ms.
The evaluation compares runs of a single BBR flow with runs
of a single CUBIC TCP flow, but no interprotocol fairness. Intra-
protocol fairness is shown with five BBR flows at 100 Mbit/s
with 10 ms RTT. Additionally, results are presented from



measurements in Google’s B4 WAN. [6] shows interprotocol
fairness results with CUBIC TCP at 10 Mbit/s and an 8bdp
buffer. While these results are confirmed by our measurements
at higher speeds in section V-G (cf. fig. 15), this shows only the
behavior of a single BBR flow against a single CUBIC TCP
flow. Presentation [6] also shows that the BBR team is aware
that BBR may suppress loss-based flows in a small bottleneck
buffer (as confirmed by fig. 16). Moreover, [6] shows results for
RTT fairness (also at 10 Mbit/s), but our observed unfairness
seems to be larger (cf. fig. 13) at higher speeds. Further results
were presented in [8] also showing interprotocol fairness to
TCP Reno (also at 10 Mbit/s, 40 ms RTT) and comparing it
to CUBIC TCP’s fairness to TCP Reno. However, these results
are only given for large buffers where BBR is mainly limited
by its inflight cap. To best of our knowledge no independent
evaluation results have been published as research paper yet.

Congestion control is still an active area of research. Several
proposals have been made in the last years to achieve similar
goals that BBR strives for. A quite old approach to avoid
queuing delay (and thus operate at point (A) of fig. 1) is
TCP Vegas [4]. However, TCP Vegas is being suppressed by
loss-based congestion control, not scalable to higher speeds and
has got issues to control the total queuing delay when multiple
TCP Vegas flows share the same bottleneck. FAST TCP [16]
is also based on TCP Vegas and aims toward high speed
wide-area networks but does not have low queuing delay as
design goal. YeAH TCP [3] and CDG [13] try also to keep
the queuing delay low. They have mechanisms that increase
their aggressiveness in case they are suppressed by other
flows. CDG has a TCP Reno like additive increase that is not
scalable for high-speed networks. YeAH TCP has a mechanism
to drain the buffer while keeping a high link utilization at the
bottleneck. TCP LoLa [14] is able to operate near (A) if one or
multiple flows share a bottleneck. Furthermore, it incorporates
a dedicated mechanism that provides a convergence to fairness
among the flows. TCP LoLa, however, is not designed to
compete with flows using a loss-based congestion control.

VII. CONCLUSION

This paper presents an extensive evaluation of the recently
proposed congestion control BBR with 10 Gbit/s and 1 Gbit/s
bottleneck links, multiple flows, and different RTTs. The results
show that the concepts of BBR work quite well for a single flow
at a bottleneck. However, the observed behavior of multiple
flows does not meet BBR’s original goal. BBR is based on
a model that reflects the aggregate behavior of all flows at
the bottleneck, but not the perspective of an individual sender.
BBR’s mechanisms inherently lead to a sustained overload
of the bottleneck resulting in a steadily increasing amount of
inflight data, queuing up at the bottleneck buffer. BBR has
no mechanism to drain this unintentionally built-up queue,
except ProbeRTT which is triggered at most every 10 s. This
leads to the observed problems of increased queuing delays
and RTT unfairness within large buffers as well as a massive
amount of packet losses and unfairness to flows with loss-
based congestion control in smaller buffers. BBR can keep

throughput high even in case of packet loss, but ignoring loss
caused by congestion can also lead to the observed cases
with massive packet loss. Furthermore, BBR has no explicit
mechanism to let multiple BBR flows converge to a fair share.
BBR has neither an explicit congestion detection mechanism
nor an explicit reaction to congestion. Since BBR is still
under active development the presented evaluation results
represent a snapshot of its current development state. However,
we believe that the provided insights on BBR’s mechanisms
and their performance are of general value for congestion
control research. Moreover, investigation of BBR’s behavior
with Active Queue Management mechanisms is interesting,
since BBR does not react to packet loss as congestion signal.

ACKNOWLEDGMENT

This work was supported by the bwNET100G+ project,
which is funded by the Ministry of Science, Research, and
the Arts Baden-Württemberg (MWK). The authors alone are
responsible for the content of this paper. Thanks to Polina
Goltsman for her help with the testbed configuration.

REFERENCES

[1] A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock, “Host-to-Host
Congestion Control for TCP,” Communications Surveys Tutorials, IEEE,
vol. 12, no. 3, pp. 304–342, May 2010.

[2] M. Allman, V. Paxson, and E. Blanton, “TCP Congestion Control,” RFC
5681, IETF, Sep. 2009.

[3] A. Baiocchi, A. P. Castellani, and F. Vacirca, “YeAH-TCP: Yet Another
Highspeed TCP,” in Int. Workshop on Protocols for Future, Large-Scale
and Diverse Network Transports (PFLDNeT), vol. 7, 2007, pp. 37–42.

[4] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP Vegas: New
Techniques for Congestion Detection and Avoidance,” in SIGCOMM ’94.
New York, NY, USA: ACM, 1994, pp. 24–35.

[5] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-Based Congestion Control,” ACM Queue, vol. 14,
no. 5, pp. 50:20–50:53, Oct. 2016.

[6] ——, “BBR Congestion Control,” Presentation in ICCRG at IETF
97th meeting, Nov. 2016. [Online]. Available: https://www.ietf.org/
proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf

[7] ——, “BBR: Congestion-based Congestion Control,” Communnications
of the ACM, vol. 60, no. 2, pp. 58–66, Jan. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3009824

[8] ——, “BBR Congestion Control: An update,” Pre-
sentation in ICCRG at IETF 98th meeting, Mar.
2017. [Online]. Available: https://www.ietf.org/proceedings/98/slides/
slides-98-iccrg-an-update-on-bbr-congestion-control-00.pdf

[9] N. Cardwell, Y. Cheng, S. H. Yeganeh, and V. Jacobson, “BBR
Congestion Control,” Jul. 2017, Internet-Draft draft-cardwell-iccrg-bbr-
congestion-control-00, IETF, work in progress.

[10] G. Fairhurst, B. Trammell, and M. Kuehlewind, “Services Provided by
IETF Transport Protocols and Congestion Control Mechanisms,” RFC
8095, IETF, Mar. 2017.

[11] J. Gettys and K. Nichols, “Bufferbloat: Dark Buffers in the Internet,”
ACM Queue, vol. 9, no. 11, pp. 40–54, Nov. 2011.

[12] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-friendly High-speed
TCP Variant,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 64–74, Jul.
2008.

[13] D. A. Hayes and G. Armitage, “Revisiting TCP Congestion Control
Using Delay Gradients,” in NETWORKING’11. Springer, 2011, pp.
328–341.

[14] M. Hock, F. Neumeister, M. Zitterbart, and R. Bless, “TCP LoLa:
Congestion Control for Low Latencies and High Throughput,” in 2017
IEEE 42nd Conference on Local Computer Networks, Oct. 2017.

[15] D. Papadimitriou, M. Welzl, M. Scharf, and B. Briscoe, “Open Research
Issues in Internet Congestion Control,” RFC 6077, IETF, Feb. 2011.

[16] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “FAST TCP: Motivation,
Architecture, Algorithms, Performance,” IEEE/ACM Transactions on
Networking, vol. 14, no. 6, pp. 1246–1259, Dec. 2006.


