
Multiple Language Family Support for Programmable
Network Systems

Michael Conrad, Marcus Schöller, Thomas Fuhrmann,
Gerhard Bocksch and Martina Zitterbart

Institut für Telematik
Universität Karlsruhe, Germany

Keywords: Programmable Networks, Flexible Service Platforms,
Execution Environment, Programming Language

Abstract. Various programmable networks have been designed and imple-
mented during the last couple of years. Many of them are focused on a single
programming language only. This limitation might—to a certain extend—hinder
the productivity of service modules being programmed for such networks. There-
fore, the concurrent support of service modules written in multiple programming
languages was investigated within the FlexiNet project. Basically, support for
three major programming paradigms was incorporated into FlexiNet: compiled
programming languages like C, interpreted languages (e.g., Java), and hardware
description languages such as VHDL. The key concept can be seen in an inte-
gral interface that is used by all three programming languages. This leads to a
configuration scheme which is totally transparent to the programming languages
used to develop the service. In order to get a better idea about the impact of the
programming language used, some measurement experiments were conducted.

1 Introduction

Active and programmable networks are a vital area of research that aims to improve
existing networks, for example, with respect to the number and flexibility of services
provided to customers or to network operators themselves. In order to achieve this,
programmable networks introduce programmable nodes—a sort of middleboxes—that
are incorporated into the network. These nodes provide services that are not available in
the network itself. For example, routers at the edge of the network do not only forward
packets but also provide some additional services, such as multicast support. These
services can be provided on demand, i.e., they need not to be pre-installed when the
router is put into operation in the network. As a result the number and flexibility of
services being provided to customers can be largly increased without demanding the
overall network infrastructure to be updated. Multicast serves as a good example, since
the introduction of IP multicast into the network would require all routers to talk IP
multicast and to provide suited routing protocols.

Although research in active and programmable networks is on-going since several
years, few working frameworks exist only. The FlexiNet framework based on AMnodes
discussed in this paper is considered as one of those frameworks. On the other hand,
an increased interest in these technologies can be observedrecently, for example, from

mobile network operators. With programmable nodes, mobility support can be easily
integrated into a network. Performance enhancing proxies (e.g. [10]) can be named as
an example. These proxies boost TCP performance in wirelessscenarios. Furthermore,
a high flexibility with respect to the network services needed is considered essential for
next generation networks in general.

Up to now, most research projects concentrated on how to realise the packet man-
gling and manipulation, how to do resource management and overcome according lim-
itations, or how to deploy such a system. From the customers point of view, services
form the most critical part of networks. However, in the context of active and pro-
grammable networks a lack of readily available implementedservices that can provide
the targeted flexibility can be observed. On one hand this is due to the concentration of
technical issues related to the design and implementation of such programmable nodes.
On the other hand, many projects are restricted to individual programming languages
and, mostly, just to a single programming language. Some projects have even developed
their own service programming languages to achieve restrictions in their programming
model or to ease tasks like resource control and management.This further limits the
number of programmers that are motivated to implement new services. As a result,
currently available services for programmable networks were mostly developed within
related projects and, thus, are limited to few available services only. However, in order
to attract customers a variety of widely interesting services needs to be readily available.
To achieve this, the hurdle to implement new services shouldbe as low as possible.

Enabling the development of services in a variety of well-known programming lan-
guages should help overcoming this problem and, thus, make programmable networks
more attractive to customers and providers. Typically, programmers are used to a couple
of programming languages they always select for network or service programming and
can not be easily convienced to learn a new one. Their refusalfurther grows if that new
language follows another programming paradigm. Programmers used to an object ori-
ented programming language often refuse to use systems which only offer support for
classical languages like C. Moreover, different programming languages have different
fortes and bring along different sets of libraries. Some services may be easier imple-
mented in Java whereas for other services C may be favourable. Therefore, the AMnet
framework [4], currently part of the larger FlexiNet project, was extended to provide
support for various programming languages.

In this framework service developers are no longer restricted to a single program-
ming language. Support for different programming languages was first presented in [7]
with special focus on resource control and limitations. This mechanism forms the basis
for flexible usage of the programming language as long as the execution environment is
run as a user space process. Any additional mechanism like a Java sandbox are usable
but not necessarily needed to safely run the programmable node.

The reminder of the paper is structured as follows. Section 2provides a brief
overview of the FlexiNet framework for those readers that are not yet familiar with
it. The concept of integrating different programming languages is discussed in detail
in Section 3. As a usage example, an RTSP/RTP implementationwith modules imple-
mented in different languages is presented in section 4. Some measurement results on

the integration of C and Java service modules complement thepaper. A brief summary
and outlook on future work concludes the paper.

1.1 Related Work

The basic concepts of programmable networks have been described in various publi-
cation, see, e.g., [2,3]. AMnet [5] which now provides the FlexiNet framework is an
operational implementation of many of these fundamental ideas together with specific
extensions and improvements [4]. Its concept is basically that of a Linux based soft-
ware router. Similar approaches have been pursued by various other projects, e.g., the
Click Modular Router project [8]. There, low-level extensions to the regular network
protocol stack provide a router environment in which so-called elements perform the
basic processing steps like packet classification and mangling. Compared to AMnet,
which (mostly) runs in the user-space of an unmodified Linux installation, Click’s di-
rect hardware access trades security and programming ease against performance. Both
projects’ common objective, namely to benefit from existingoperating system func-
tionality, is also shared by SILK [1], in which a port of Scout[9] replaces the standard
Linux protocol stack.

2 Brief Introduction into FlexiNet Framework

The FlexiNet framework provides a design and implementation for the paradigm of
programmable networks. The design paradigm is based on the fact that programs (re-
specticely service modules) can be downloaded on demand in order to provide a ser-
vice. This flexibility, however, is not expected to be provided on a per-packet bases but,
in contrast, for dedicated end-to-end data flows. These service modules are available
from so-called service module repositories. Installationand termination of services in
the network takes place according to the demands of a serviceuser. Thereby, a service
can be constructed out of several so-called service modules. These service modules are
arranged in a service module chain, i.e. different service modules are processed sequen-
tially for a certain IP packet in order to provide it with the desired service.

The architecture of the programmable node (so-called AMnode) used in the Flex-
iNet framework basically consists of two major components:the framework and the
execution environment (cf., Fig. 1). The framework itself provides all required system
services, such as handling several execution environmentsas well as creation and setup
of desired services. The execution environment acts as runtime system for a specified
service, which consists of different service modules. For each service FlexiNet creates a
separate execution environment and instantiates all modules that are needed to provide
a certain service in this execution environment. Inside theframework several execution
environments run separately and independent from each other. IP packets for a desired
service will be forwarded to the corresponding execution environment and, then, can be
processed accordingly by the chain of service modules.

Currently, FlexiNet provides support for the following programming languages: C,
C++, Java and VHDL. They can be used concurrently, i.e., if a service is composed of

system network
services

admin
console

resource
monitorfilter

another EE

another EE

another EEservice modules

Flexinet framework

Flexinet
execution environment

(EE)

Fig. 1. Structure of FlexiNet framework and execution environment

different service modules, those modules can be written in different programming lan-
guages. C and C++ were chosen since they are popular languages for network program-
ming. Java brings additional support that is particular valuable for higher level services.
The support of VHDL allows us to outsource processing intensive service modules on
dedicated programmable hardware platforms.

In FlexiNet service modules are natively programmed in C andcompiled to shared
libraries which are dynamically loaded into the execution environment on demand. In
[6] we introduced the concept of Happlets and gave an extensive overview on per-
formance and interaction with other service modules. Happlets are an abstraction for
various hardware programming languages, such as VHDL. WithHapplets a so-called
virtual service module is loaded into the execution environment which sets up and con-
figures hardware like DSPs or FPGAs and redirects incoming packets to that hardware.
The concept of Happlets itself will not be discussed furtherwithin this paper. Interested
readers are referred to [6].

Furthermore, Java is integrated into FlexiNet as an exampleof an interpreted pro-
gramming language. An advantage of integrating support forJava is its platform in-
dependence in contrast to object code which is compiled for apredefined system.
This eases the deployment of modules in heterogeneous environments. Moreover, Java
brings along a vast number of classes and packages which alleviate the design and pro-
gramming of new services. Besides C Java is a popular networkprogramming language.
Many software developers are familiar with its principals and can implement modules
very fast. Both facts are expected to help increase the number of FlexiNet service pro-
grammers considerably.

The decision to integrate the different programming languages as special FlexiNet
modules gave us the freedom to develop them independently aslong as the interface
stays the same. Further on an execution environment only hasto instantiate the lan-

guage support for those languages which were used to programthat service. In that
way system resources can be saved but still any combination of service modules from
various programming language is possible.

3 Integration of Multiple Language Support

This section focuses on the technical issues of integratingsupport for multiple lan-
guages in FlexiNet. It is our assumption that a service designer has broken up the prob-
lem in several subproblems. Each of these subproblems is realised in one service mod-
ule. The module programmer can now freely choose from the programming languages
supported by FlexiNet. The key concept can be seen in an integral interface that is used
by all three programming languages. This leads to a configuration scheme which is
totally transparent to the programming languages used to develop the service. An ex-
amples on how a service can be configured with service modulesthat are implemented
in different programming languages is presented in section3.

3.1 General integration concept

In the original design FlexiNet only supported shared object code. As a result, all service
modules had to be implemented in C oder C++. For usage by the execution environment
the modules must implement the following function prototypes (cf., Fig. 2).

1 #include "modules.h"
2
3 int module_init(struct module *module);
4 int module_shutdown(struct module *module);
5
6 int module_run(struct module *module, nl_packet_msg *nlPacketMsg,
7 struct iphdr *ip);

% 8
% 9 int getstatus(struct module *module);

Fig. 2. FlexiNet C module interface

The functionmodule init is called once after instantiation of the specified mod-
ule. Accordingly the functionmodule shutdown is called once at termination of the
module. The functionmodule run is called for all IP packets that are processed by
the corresponding service modules. The parameters of the function provide some in-
formation about the module itself as well as the desired IP packet. Inside this function
the module can create, delete or modify IP packets. For example, a service module may
receive a single IP packet and provide multiple replicated IP packets at its output in-
terface (e.g., in case of a multicast service). By setting special return codes the further
processing of the IP packet can be guided.

3.2 Integration of Java-based service modules

The interface for Java modules is analogous to the C interface:

1 package de.flexinet.modules;
2
3 public interface FlexinetModule {
4
5 public void moduleInit(Adapter a);
6 public void moduleShutdown();
7
8 public void moduleRun(IPPacket ip, NlPacketMsg nlPacketMsg)
9 throws FlexinetException;

10
11 public String status();
12 }

Fig. 3. FlexiNet Java module interface

To integrate support for Java-based service modules a programming interface for
Java and a wrapper module was designed and implemented. The wrapper module is
written in C and implements the classical FlexiNet module interface already described
above. During module initialisation the Java Virtual Machine (JVM) is started and con-
figured using the Java Native Interface (JNI). In addition some special memory is allo-
cated which is used to pass IP packets from the wrapper to Java. Furthermore, within
the JVM an adapter class is started which functions as a counterpart to the wrapper
module is started. As a result, service modules written in Java only must implement the
interfaceFlexinetModule (cf., Fig. 3).

To process an IP packet the wrapper copies the IP packet into the allocated memory
and calls the functionmoduleRun of the adapter which only calls the corresponding
function within the Java module. After packet processing within the JVM the wrapper
passes the packet to the next service module or back into the IP layer if that was the last
module of the service module chain.

3.3 Startup Script for FlexiNet modules

The FlexiNet configuration scheme is transparent to the programming language used to
implement service modules. All startup scripts contain twoparts: the first one configures
the modules used to realise the desired service, the second one defines filter rules to
select packets to which the service is applied to.

The module configuration section contains all information,required for correct in-
stantiation and setup of a specified module. The following example (cf. Fig. 4) shows
the module configuration section of a C and a Java module.

1 loadmodule nop_c { 1 loadmodule nop_java {
2 file "libnop.so"; 2 file "libjmod.so";
3 3 className = "Nop";
4 myparameter = "some string"; 4 myparameter = "some string";
5 }; 5 };

Fig. 4. Module configuration section of FlexiNet execution environment script (C and Java)

The left side of figure 4) presents the configuration section for the NOP module
written in C. The right side shows the configuration section for the equivalent mod-
ule written in Java. Both start with theloadmodule command in line 1. In line 2
the C example loads the shared librarylibnop.so, which contains the NOP mod-
ule written in C. In the same line the Java example loads the librarylibjmod.so,
which contains the wrapper for Java modules. This wrapper creates a virtual machine
and loads the desired service module. Information about that module is taken from the
parameterclassName which is shown in line 3. In this case the classNop should be
loaded. Both module configuration sections contain the setting of a paramenter called
myparameter in line 4.

In addition to the module configuration section each startupscript must con-
tain a network configuration section. This network configuration section is indepen-
dent of the module implementation language. The section holds information about
the network traffic that should be processed by the module. With the following
configuration it is indicated, that the packets for all TCP connections from server
www.some-server.net port 80 should be processed by the service module. The
commandnfhook in line 3 specifies the Netfilter hook of the Linux kernel, thatap-
plies to the service module. In the example the module selects hookPREROUTING. As
a result, the processing of the IP traffic by this service module takes place before the
routing lookup takes place.

1 listen {
2 protocol "tcp";
3 nfhook PREROUTING;
4
5 source {
6 name "www.some-server.net";
7 port 80;
8 };
9 };

Fig. 5. Network configuration section of FlexiNet execution environment script

3.4 Structuring the service modules

Only very few services can be implemented within one module.Most services are com-
posed of several different modules each of those providing asingle task. The next sec-
tion shows an example service which consists of three modules.

The easiest way to connect modules is to build a single chain where packets get
processed by each module consecutively. This is the standard behavior of the FlexiNet
execution environment. However the service programmer caninfluence the order of
modules. The FlexiNet execution environment supports the dynamic creation of multi-
ple in-ports. One optional parameter of a filter entry is the module name of that module
which should start the packet processing. This mechanismenwas used in the following
example as shown figure 6 where RTSP packets are handled diffrently from RTP pack-
ets. A second way to alter the order of modules is by building conditional branches or
loops. Within each module the programmer can set the next module by a simple call
to the execution environment. Furthermore it is possible toabort the packet process-
ing any time by either deleting the packet or by returning it to the IP layer. All thoses
possiblities can be used in C and Java.

Finally an effective way to pass parameters from one module to another must be
provided to realise real cooperation of modules. The FlexiNet execution environment
provides to mechanisms for that. The first way is to set configuration parameters of
one module by a simple call the the execution environment by another module. This
provides a easy interface of module interaction. The secondway is to use a stack which
is provided by the FlexiNet execution environment. Any module can push data onto
that stack where it will remain until a module pops it from there. The access to the stack
from within Java is realised by JNI functions.

4 Cooperation among heterogeneous service modules

To demonstrate the cooperation of service modules programmed with different pro-
gramming languages (so-called heterogeneous service modules) we chose to realise an
RTSP/RTP application level multicast service. The decision was driven by the goal to
provide relevant services to emerging applications. RTSP/RTP has proven to be such
a service. For example, web radio applications often use RTPto deliver audio data to
the end system after the RTSP protocol negotiated several communication parameters.
Many times, multiple end users will request the same audio stream from RTP servers.
In such cases, programmable nodes, such as the once developed within the FlexiNet
project, can help to reduce the server load and the bandwidthutilisation if multiple re-
ceivers of the same audio stream are located behind the same programmable network
node. Therefore, the service placed at the programmable node acts as both, an audio
stream client as well as an audio server. The client role is dedicated to the sender of the
stream, i.e., the programmable nodes acts as one client receiving the audio stream. Lo-
cally, the programmable node replicates the audio stream and forwards it to all clients
in its subnet. Thus it owns the server role with respect to these clients.

In order to implement the above scenario, various service modules are required, as
depicted in Figure 6.

Flexinet execution environment (EE)

RTSP Proxy

Configure

Redirect

Reply

RTSP

RTP

TCP−Interceptor

Packet Doubling and Address Rewriting

Fig. 6. A RTSP/RTP application level multicast service

The TCP interceptor module redirects incoming packets fromany client to the local
machine. As a result, the RTSP proxy module receives the dataand parses the RTSP
message accordingly. RTSP messages are text based similar to HTTP messages. If the
received RTSP message is the first request for a stream, the RTSP proxy initiates a new
RTSP client connection to the requested server and forwardsthe server information to
the client. If already an earlier request for that stream wasreceived, the RTSP proxy
retransmits the corresponding cached RTSP messages to the client. Any client is added
to a list of receivers for that particular audio stream. The Packet Doubling and Address
Setting module reads this list of clients and replicates as required. Furthermore, the
addresses are set appropriately.

The above described RTSP/RTP scenario is currently being implemented in the
FlexiNet project. For the implementation it turned out to bevery convenient to use dif-
ferent programming languages for the service modules. Since text parsing can be very
easily implemented in Java—regular expression were added in version 1.4 of Java—we
decided to implement that module in Java. The TCP interceptor was already imple-
mented for other services in C. The packet duplication and address setting is a simple
task that has to be applied to lots of packets. Therefore, we decided to implement this
module in C. Due to the integration concept of service modules written in different
languages, the described modules can interact seamlessly.

5 Some Performance Considerations

In order to get a feeling for the overhead associated with service modules written in dif-
ferent programming languages, we conducted a number of measurement experiments.
For example, the overhead introduced by using Java was of some interest. The exper-
iments were performed on a Pentium III 800MHz Linux (2.4.19)Router with 256MB
memory. Client and server were both directly connected to this router via a 100Mbit
Ethernet network.

5.1 Overhead of Java Service Modules

To measure the overhead introduced by Java several experiments were conducted. First
measurements were taken on a router that was not running a FlexiNet execution en-
vironment at all. Then, first a C module and second a Java module was added to that
router. Both service modules simply decremented the IP TTL field. We used theping
program to measure the round trip time of packets. Every testwas run with 100000
packets. The results are summarized in table 1.

Module Min/ms Avg/ms Max/ms

no module 0.083 0.085 0.177
C NOP module 0.101 0.106 2.259

Java NOP module 0.111 0.118 2.776
Java NOP module (cold)0.111 0.120 14.801

Table 1. Overhead measurements

As table 1 shows, a small overhead can be noticed by the Java service module com-
pared to the C module. Mainly, the additional copy operationof the IP packet from the
wrapper to the Jave service module is responsible for that.

The last line of table 1 reflects the effect of just-in-time compilation. The Java ser-
vice module is compiled at its initial execution. As a result, the maximum value is
drastically higher than all other measured times for the Java service module were just-
in-time compilation did not take place.

5.2 Initial Performance Tests

For the performance measurements reported here, the network tooliperf with packet
size of 1470 byte and UDP as transport protocol was used. The test setup consisted
of 3 machines. One machine acts as client, one as server and the other as a pro-
grammable node between both. The network traffic generated by the client was var-
ied from 10Mbit/s up to the theoretical maximum of the network (100Mbit/s) and the
incoming bandwidth at the server was measured.

The measurement results are summarized in figure 7. The practical achievable
throughput was measured without any processing of IP packets inside the FlexiNet ex-
ecution environment. Further measurements were conductedwith simple service mod-
ules, that implementUDP checksum calculation in C and Java.

As long as the programmable node can keep up with the receivedload, no packet
loss and, thus, no performance degradation can be observed.As soon as the node is
overloaded packets must be dropped and, as a result, the bandwidth of the incoming
data stream at the server degrades accordingly as shown in figure 7. Alltogether, the
experiments show that the performance of the Java service modules is lower than the
one of the service modules written in C. This, however, is notsurprising. Furthermore,
the Java modules consume more resources since they require JVM to be installed.

Relating the measurements to the above described example ofan RTSP/RTP im-
plementation with heterogeneous service modules, it can bestated that the application
of Java for text parsing makes sense. This service module is part of the control plane
and, thus, is not as performance critical as those modules ofthe data plane. Using Java
to implement such a service module is perfectly suitable. Onthe other side, it is also
advisable to write performance critical service modules, for example, in C.

 75

 80

 85

 90

 95

 100

 75 80 85 90 95 100

B
an

dw
id

th
 (

M
B

it/
s)

Bandwidth (MBit/s)

Flexinet performance measurement C versus Java

theoretical
pratical

UDP 1x (C)
UDP 1x (Java)

UDP 2x (C)
UDP 2x (Java)

Fig. 7. Performance measurements

6 Summary

Programmable networks still lack readily available services. Among many issues that
are responsible for that situation, an important aspect canbe seen in the possibility of
using service modules that are written in different implementation languages, dependent
on the implementers preference. On the one hand service designers and programmers
have varying experience in different programming paradigms or even programming
languages. On the other hand programming languages have different fortes. The support
of multiple programming languages eases the work of servicemodule designing and
programming and may very well raise the productivity with respect to service module
implementations.

Motivated by this idea, FlexiNet was enhanced in order to simultaneously support
multiple programming languages even for service modules being part of the same ser-
vice module chain.

The integration of C, Java, and Happlets in FlexiNet is seamless and transparent in
view to programming interfaces and configuration. In order to get a close idea on the
overheads involved in the different programming languages, particularly C and Java,
various measurement experiments were conducted. The higher overhead of Java could
be clearly seen. However, the performance is by far good enough to apply Java service
modules, for example, in the control plane as demonstrated in the RTSP/RTP example.

References

1. Andy Bavier, Thiemo Voigt, Mike Wawrzoniak, Larry Peterson, and Per Gunningberg.
SILK: Scout paths in the Linux kernel. Technical Report 2002-009, Uppsala Universitet,
February 2002.

2. Kenneth L. Calvert, Samrat Bhattacharjee, Ellen Zegura,and James Sterbenz. Directions in
active networks.IEEE Communications Magazine, 36(10):72–78, October 1998.

3. Andrew T. Campbell, Herman G. De Meer, Michael E. Kounavis, Kazuho Miki, John B. Vi-
cente, and Daniel Villela. A survey of programmable networks. ACM SIGCOMM Computer
Communication Review, 29(2), April 1999.

4. Thomas Fuhrmann, Till Harbaum, Panos Kassianidis, Marcus Schöller, and Martina Zitter-
bart. Results on the practical feasibility of programmablenetwork services. In2nd Interna-
tional Workshop on Active Network Technologies and Applications (ANTA 2003), 2003.

5. Thomas Fuhrmann, Till Harbaum, Marcus Schöller, and Martina Zitterbart. AMnet 3.0
source code distribution. Available from http://www.flexinet.de.

6. Till Harbaum, Anke Speer, Ralph Wittmann, and Martina Zitterbart. Providing Heteroge-
neous Multicast Services with AMnet.Journal of Communications and Networks, 3(1),
March 2001.

7. A. Hess, M. Schöller, G. Schäfer, A. Wolisz, and M. Zitterbart. A dynamic and flexible access
control and resource monitoring mechanism for active nodes. In Proceedings of the 5th
International Conference on Open Architectures and Network Programming (OPENARCH)
(Short Paper Session), 2002.

8. Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti,and M. Frans Kaashoek. The click
modular router.ACM Transactions on Computer Systems, 18(3):263–297, August 2000.

9. David Mosberger.Scout: A Path-based Operating System. PhD thesis, Department of Com-
puter Science, University of Arizona, July 1997.

10. M. Schlaeger, B. Rathke, S. Bodenstein, and A. Wolisz, editors. Advocating a Remote Socket
Architecture for Internet Access using Wireless LANs, volume 6 no. 1 pp. 23-42. Mobile
Networks and Applications (Special Issue on Wireless Internet and Intranet Access), January
2001.

