Multiple Language Family Support for Programmable
Network Systems

Michael Conrad, Marcus Scholler, Thomas Fuhrmann,
Gerhard Bocksch and Martina Zitterbart

Institut fur Telematik
Universitat Karlsruhe, Germany

Keywords: Programmable Networks, Flexible Service Platforms,
Execution Environment, Programming Language

Abstract. Various programmable networks have been designed and -imple
mented during the last couple of years. Many of them are ftus a single
programming language only. This limitation might—to a eértextend—hinder
the productivity of service modules being programmed fehswetworks. There-
fore, the concurrent support of service modules written irftiple programming
languages was investigated within the FlexiNet projecti@&aly, support for
three major programming paradigms was incorporated int@iRet: compiled
programming languages like C, interpreted languages, (Jaga), and hardware
description languages such as VHDL. The key concept candeigean inte-
gral interface that is used by all three programming langeaghis leads to a
configuration scheme which is totally transparent to thgmmming languages
used to develop the service. In order to get a better ideat dbeumpact of the
programming language used, some measurement experimergsanducted.

1 Introduction

Active and programmable networks are a vital area of rebelduat aims to improve
existing networks, for example, with respect to the numimer #exibility of services
provided to customers or to network operators themselvesrder to achieve this,
programmable networks introduce programmable nodes—tatoriddleboxes—that
are incorporated into the network. These nodes providécgsrthat are not available in
the network itself. For example, routers at the edge of tieark do not only forward
packets but also provide some additional services, suchudticast support. These
services can be provided on demand, i.e., they need not toebmgtalled when the
router is put into operation in the network. As a result thenber and flexibility of
services being provided to customers can be largly incceagiout demanding the
overall network infrastructure to be updated. Multicasvee as a good example, since
the introduction of IP multicast into the network would réguall routers to talk IP
multicast and to provide suited routing protocols.

Although research in active and programmable networksigaing since several
years, few working frameworks exist only. The FlexiNet flemork based on AMnodes
discussed in this paper is considered as one of those frarkew@n the other hand,
an increased interest in these technologies can be obsememtly, for example, from

mobile network operators. With programmable nodes, mgtslipport can be easily
integrated into a network. Performance enhancing proxas {10]) can be named as
an example. These proxies boost TCP performance in wirstesgrios. Furthermore,
a high flexibility with respect to the network services nesbeconsidered essential for
next generation networks in general.

Up to now, most research projects concentrated on how tseetlle packet man-
gling and manipulation, how to do resource management aextomne according lim-
itations, or how to deploy such a system. From the customarg pf view, services
form the most critical part of networks. However, in the axttof active and pro-
grammable networks a lack of readily available implemestadices that can provide
the targeted flexibility can be observed. On one hand thiséstd the concentration of
technical issues related to the design and implementatismatn programmable nodes.
On the other hand, many projects are restricted to indivigt@gramming languages
and, mostly, just to a single programming language. Somjegishave even developed
their own service programming languages to achieve réisingin their programming
model or to ease tasks like resource control and managemigistfurther limits the
number of programmers that are motivated to implement nevicgs. As a result,
currently available services for programmable networksaweostly developed within
related projects and, thus, are limited to few availableises only. However, in order
to attract customers a variety of widely interesting sessiceeds to be readily available.
To achieve this, the hurdle to implement new services shioailals low as possible.

Enabling the development of services in a variety of weliakn programming lan-
guages should help overcoming this problem and, thus, magraammable networks
more attractive to customers and providers. Typicallygpaonmers are used to a couple
of programming languages they always select for networlenrise programming and
can not be easily convienced to learn a new one. Their refughker grows if that new
language follows another programming paradigm. Programomeed to an object ori-
ented programming language often refuse to use system&whlg offer support for
classical languages like C. Moreover, different prograngrhanguages have different
fortes and bring along different sets of libraries. Some&ises may be easier imple-
mented in Java whereas for other services C may be favouittideefore, the AMnet
framework [4], currently part of the larger FlexiNet prdjewas extended to provide
support for various programming languages.

In this framework service developers are no longer restlitb a single program-
ming language. Support for different programming langsagas first presented in [7]
with special focus on resource control and limitations.sTthechanism forms the basis
for flexible usage of the programming language as long asdd&ion environment is
run as a user space process. Any additional mechanism lixeaasdndbox are usable
but not necessarily needed to safely run the programmalble.no

The reminder of the paper is structured as follows. Sectiqggrdides a brief
overview of the FlexiNet framework for those readers that mot yet familiar with
it. The concept of integrating different programming laages is discussed in detalil
in Section 3. As a usage example, an RTSP/RTP implementattbrmodules imple-
mented in different languages is presented in section 4 eSogasurement results on

the integration of C and Java service modules complememaper. A brief summary
and outlook on future work concludes the paper.

1.1 Related Work

The basic concepts of programmable networks have beeniloesdén various publi-
cation, see, e.g., [2,3]. AMnet [5] which now provides thexiNet framework is an
operational implementation of many of these fundamentdsdogether with specific
extensions and improvements [4]. Its concept is basichy of a Linux based soft-
ware router. Similar approaches have been pursued by wanitker projects, e.g., the
Click Modular Router project [8]. There, low-level exteniss to the regular network
protocol stack provide a router environment in which sdechdl ements perform the
basic processing steps like packet classification and rmgndCompared to AMnet,
which (mostly) runs in the user-space of an unmodified Limstdllation, Click’s di-
rect hardware access trades security and programming gasestaperformance. Both
projects’ common objective, namely to benefit from existomerating system func-
tionality, is also shared by SILK [1], in which a port of Scq8} replaces the standard
Linux protocol stack.

2 Brief Introduction into FlexiNet Framework

The FlexiNet framework provides a design and implementatos the paradigm of
programmable networks. The design paradigm is based oratihéhfat programs (re-
specticely service modules) can be downloaded on demandiér to provide a ser-
vice. This flexibility, however, is not expected to be pradbn a per-packet bases but,
in contrast, for dedicated end-to-end data flows. Thesécgemodules are available
from so-called service module repositories. Installaod termination of services in
the network takes place according to the demands of a sars&re Thereby, a service
can be constructed out of several so-called service modiikese service modules are
arranged in a service module chain, i.e. different serviodules are processed sequen-
tially for a certain IP packet in order to provide it with thedired service.

The architecture of the programmable node (so-called AMhoded in the Flex-
iNet framework basically consists of two major componettis: framework and the
execution environment (cf., Fig. 1). The framework itsetbyades all required system
services, such as handling several execution environrasnt®ll as creation and setup
of desired services. The execution environment acts agmardgystem for a specified
service, which consists of different service modules. Boheservice FlexiNet creates a
separate execution environment and instantiates all medbht are needed to provide
a certain service in this execution environment. Insiddidimework several execution
environments run separately and independent from each tfhgackets for a desired
service will be forwarded to the corresponding executionrenment and, then, can be
processed accordingly by the chain of service modules.

Currently, FlexiNet provides support for the following gramming languages: C,
C++, Java and VHDL. They can be used concurrently, i.e., draise is composed of

Flexinet framework

system network resource admin
services filter monitor console
Flexinet
execution environment
(EE) another EE
-] another EE
service modules another EE

Fig. 1. Structure of FlexiNet framework and execution environment

different service modules, those modules can be writterifiardnt programming lan-

guages. C and C++ were chosen since they are popular largfisagetwork program-

ming. Java brings additional support that is particulanahle for higher level services.
The support of VHDL allows us to outsource processing iritenservice modules on
dedicated programmable hardware platforms.

In FlexiNet service modules are natively programmed in C @ndpiled to shared
libraries which are dynamically loaded into the executiomi@nment on demand. In
[6] we introduced the concept of Happlets and gave an exterwsierview on per-
formance and interaction with other service modules. Hetfgpdre an abstraction for
various hardware programming languages, such as VHDL. Wétpplets a so-called
virtual service module is loaded into the execution envinent which sets up and con-
figures hardware like DSPs or FPGAs and redirects incomingeia to that hardware.
The concept of Happlets itself will not be discussed furthighin this paper. Interested
readers are referred to [6].

Furthermore, Java is integrated into FlexiNet as an exaofpd@ interpreted pro-
gramming language. An advantage of integrating supporfdwa is its platform in-
dependence in contrast to object code which is compiled fpreglefined system.
This eases the deployment of modules in heterogeneousanments. Moreover, Java
brings along a vast number of classes and packages whiefatdi¢he design and pro-
gramming of new services. Besides C Java is a popular nefsvogtamming language.
Many software developers are familiar with its principatslaan implement modules
very fast. Both facts are expected to help increase the nuailidexiNet service pro-
grammers considerably.

The decision to integrate the different programming lamgseas special FlexiNet

modules gave us the freedom to develop them independenthngsas the interface
stays the same. Further on an execution environment onlyohestantiate the lan-

guage support for those languages which were used to protpanservice. In that
way system resources can be saved but still any combinatisereice modules from
various programming language is possible.

3 Integration of Multiple Language Support

This section focuses on the technical issues of integraimport for multiple lan-
guages in FlexiNet. It is our assumption that a service aesigas broken up the prob-
lem in several subproblems. Each of these subproblemsliseg&n one service mod-
ule. The module programmer can now freely choose from thgraroming languages
supported by FlexiNet. The key concept can be seen in arraitegerface that is used
by all three programming languages. This leads to a configuracheme which is
totally transparent to the programming languages usedvelaie the service. An ex-
amples on how a service can be configured with service mothdg¢sire implemented
in different programming languages is presented in se&@ion

3.1 General integration concept

Inthe original design FlexiNet only supported shared digjede. As a result, all service
modules had to be implemented in C oder C++. For usage by #wiggn environment
the modules must implement the following function protasfcf., Fig. 2).

#i ncl ude "nodul es. h"

1

2

3 int nmodule_init(struct nodul e *nodul e);

4 int nodul e_shutdown(struct nodul e *nmodul e);

5

6 int nodul e_run(struct nodul e *nbdul e, nl_packet_nsg *nl Packet Msg,
7 struct iphdr xip);

% 8

%9 int getstatus(struct nodul e *nodul e);

Fig. 2. FlexiNet C module interface

The functionmodul e_i ni t is called once after instantiation of the specified mod-
ule. Accordingly the functiomodul e_shut down is called once at termination of the
module. The functiomodul e_r un is called for all IP packets that are processed by
the corresponding service modules. The parameters of tiwidm provide some in-
formation about the module itself as well as the desired k@l Inside this function
the module can create, delete or modify IP packets. For eleampervice module may
receive a single IP packet and provide multiple replicateégéckets at its output in-
terface (e.g., in case of a multicast service). By settiregigh return codes the further
processing of the IP packet can be guided.

3.2 Integration of Java-based service modules

The interface for Java modules is analogous to the C interfac

1 package de. fl exi net. nodul es;
2
3 public interface Fl exi net Modul e {
4
5 public void nodul elnit(Adapter a);
6 public void nodul eShut down();
7
8 public void nodul eRun(| PPacket ip, N PacketMsg nl Packet Msg)
9 t hrows Fl exi net Excepti on;
10
11 public String status();
12 }

Fig. 3. FlexiNet Java module interface

To integrate support for Java-based service modules a groging interface for
Java and a wrapper module was designed and implemented. rEipgevy module is
written in C and implements the classical FlexiNet moduteriface already described
above. During module initialisation the Java Virtual Magh{JVM) is started and con-
figured using the Java Native Interface (JNI). In additiomeapecial memory is allo-
cated which is used to pass IP packets from the wrapper to Bavidnermore, within
the JVM an adapter class is started which functions as a emant to the wrapper
module is started. As a result, service modules writtenva daly must implement the
interfaceFl exi net Mbdul e (cf., Fig. 3).

To process an IP packet the wrapper copies the IP packetie@llbcated memory
and calls the functionodul eRun of the adapter which only calls the corresponding
function within the Java module. After packet processinthinithe JVM the wrapper
passes the packet to the next service module or back int@tlagér if that was the last
module of the service module chain.

3.3 Startup Script for FlexiNet modules

The FlexiNet configuration scheme is transparent to theraroging language used to
implement service modules. All startup scripts containpacs: the first one configures
the modules used to realise the desired service, the secendadines filter rules to
select packets to which the service is applied to.

The module configuration section contains all informati@guired for correct in-
stantiation and setup of a specified module. The followirgneple (cf. Fig. 4) shows
the module configuration section of a C and a Java module.

1 | oadnodul e nop_c { 1 | oadnodul e nop_j ava {

2 file "libnop.so"; 2 file "libjnod.so";

3 3 cl assNane = "Nop";

4 nyparaneter = "sone string"; 4 nyparaneter = "sone string";
5 1 5 %

Fig. 4. Module configuration section of FlexiNet execution envir@ant script (C and Java)

The left side of figure 4) presents the configuration sectamttie NOP module
written in C. The right side shows the configuration sectionthe equivalent mod-
ule written in Java. Both start with tHeoadnodul e command in line 1. In line 2
the C example loads the shared librarybnop. so, which contains the NOP mod-
ule written in C. In the same line the Java example loads tivarly| i bj nod. so,
which contains the wrapper for Java modules. This wrappesates a virtual machine
and loads the desired service module. Information abotintioaule is taken from the
parametec| assNane which is shown in line 3. In this case the cla$sp should be
loaded. Both module configuration sections contain théngetif a paramenter called
mypar anet er in line 4.

In addition to the module configuration section each stadoppt must con-
tain a network configuration section. This network configiorasection is indepen-
dent of the module implementation language. The sectiodshiformation about
the network traffic that should be processed by the moduldgh \tie following
configuration it is indicated, that the packets for all TCPhmections from server
www. sone- server . net port 80 should be processed by the service module. The
commanadnf hook in line 3 specifies the Netfilter hook of the Linux kernel, tlagt
plies to the service module. In the example the module sehamkPREROUTI NG. As
a result, the processing of the IP traffic by this service nietikkes place before the
routing lookup takes place.

listen {
protocol "tcp";
nf hook PREROUTI NG,

source {
name "wWw. sonme-server. net";
port 80;

H

©oO~NOOOULDWNPE

Fig. 5. Network configuration section of FlexiNet execution enmirgent script

3.4 Structuring the service modules

Only very few services can be implemented within one modutest services are com-
posed of several different modules each of those providisiggle task. The next sec-
tion shows an example service which consists of three medule

The easiest way to connect modules is to build a single chherevpackets get
processed by each module consecutively. This is the stdiddravior of the FlexiNet
execution environment. However the service programmericfuence the order of
modules. The FlexiNet execution environment supports yimachic creation of multi-
ple in-ports. One optional parameter of a filter entry is tleglole name of that module
which should start the packet processing. This mechanisvasrused in the following
example as shown figure 6 where RTSP packets are handleshdifffrom RTP pack-
ets. A second way to alter the order of modules is by buildimggditional branches or
loops. Within each module the programmer can set the nexutadyy a simple call
to the execution environment. Furthermore it is possiblatiort the packet process-
ing any time by either deleting the packet or by returningittte IP layer. All thoses
possiblities can be used in C and Java.

Finally an effective way to pass parameters from one modubnbther must be
provided to realise real cooperation of modules. The Flekigkecution environment
provides to mechanisms for that. The first way is to set cordigan parameters of
one module by a simple call the the execution environmentrintteer module. This
provides a easy interface of module interaction. The see@yds to use a stack which
is provided by the FlexiNet execution environment. Any miedean push data onto
that stack where it will remain until a module pops it fromrhelhe access to the stack
from within Java is realised by JNI functions.

4 Cooperation among heterogeneous service modules

To demonstrate the cooperation of service modules progeaimmith different pro-
gramming languages (so-called heterogeneous servicele®)aue chose to realise an
RTSP/RTP application level multicast service. The deaisi@as driven by the goal to
provide relevant services to emerging applications. RREP/has proven to be such
a service. For example, web radio applications often use teTrliver audio data to
the end system after the RTSP protocol negotiated sevarahcmication parameters.
Many times, multiple end users will request the same audeast from RTP servers.
In such cases, programmable nodes, such as the once del/elipm the FlexiNet
project, can help to reduce the server load and the bandwiiigation if multiple re-
ceivers of the same audio stream are located behind the saxgemmpmmable network
node. Therefore, the service placed at the programmable actd as both, an audio
stream client as well as an audio server. The client roledécdéed to the sender of the
stream, i.e., the programmable nodes acts as one cliemtirgcthe audio stream. Lo-
cally, the programmable node replicates the audio streahicaawards it to all clients
in its subnet. Thus it owns the server role with respect tedlaients.

In order to implement the above scenario, various servicgules are required, as
depicted in Figure 6.

Flexinet execution environment (EE)

RTSP

TCP-Interceptor

\\
% _ Reply
Redirect ~~~-af prep Proxy

; Configure

RTP Packet Doubling and Address Rewriting

Fig.6. A RTSP/RTP application level multicast service

The TCP interceptor module redirects incoming packets fagnclient to the local
machine. As a result, the RTSP proxy module receives theatatgarses the RTSP
message accordingly. RTSP messages are text based soraimTP messages. If the
received RTSP message is the first request for a stream, BB Rioxy initiates a new
RTSP client connection to the requested server and forwaedserver information to
the client. If already an earlier request for that stream meagived, the RTSP proxy
retransmits the corresponding cached RTSP messages fietite Any client is added
to a list of receivers for that particular audio stream. Theket Doubling and Address
Setting module reads this list of clients and replicateseagiired. Furthermore, the
addresses are set appropriately.

The above described RTSP/RTP scenario is currently beipdeimented in the
FlexiNet project. For the implementation it turned out tovieey convenient to use dif-
ferent programming languages for the service moduleseSaxt parsing can be very
easily implemented in Java—regular expression were addesgtsion 1.4 of Java—we
decided to implement that module in Java. The TCP intercepas already imple-
mented for other services in C. The packet duplication amfles$ setting is a simple
task that has to be applied to lots of packets. Therefore,eg&ldd to implement this
module in C. Due to the integration concept of service maslutgtten in different
languages, the described modules can interact seamlessly.

5 Some Performance Consider ations

In order to get a feeling for the overhead associated wittiG@modules written in dif-
ferent programming languages, we conducted a number ofurerasnt experiments.
For example, the overhead introduced by using Java was of smerest. The exper-
iments were performed on a Pentium Il 800MHz Linux (2.4.R@uter with 256MB
memory. Client and server were both directly connected ioributer via a 100Mbit
Ethernet network.

5.1 Overhead of Java Service Modules

To measure the overhead introduced by Java several expesimere conducted. First
measurements were taken on a router that was not runningcéNEteexecution en-
vironment at all. Then, first a C module and second a Java reogas added to that
router. Both service modules simply decremented the IP Tdld.fWwe used thei ng
program to measure the round trip time of packets. Everyvast run with 100000
packets. The results are summarized in table 1.

| Module [Min/ms|Avg/mgMax/mg

no module 0.083| 0.085| 0.177

C NOP module 0.101| 0.106| 2.259

Java NOP module | 0.111| 0.118| 2.776

Java NOP module (cold)0.111| 0.120| 14.801
Table 1. Overhead measurements

As table 1 shows, a small overhead can be noticed by the Janaesmiodule com-
pared to the C module. Mainly, the additional copy operatibtine IP packet from the
wrapper to the Jave service module is responsible for that.

The last line of table 1 reflects the effect of just-in-timergwlation. The Java ser-
vice module is compiled at its initial execution. As a restite maximum value is
drastically higher than all other measured times for the 3@rvice module were just-
in-time compilation did not take place.

5.2 Initial Performance Tests

For the performance measurements reported here, the hatvadi per f with packet
size of 1470 byte and UDP as transport protocol was used. 88tesétup consisted
of 3 machines. One machine acts as client, one as server andthbr as a pro-
grammable node between both. The network traffic generatatieoclient was var-
ied from 10Mbit/s up to the theoretical maximum of the netwrO0OMbit/s) and the
incoming bandwidth at the server was measured.

The measurement results are summarized in figure 7. Theigaleachievable
throughput was measured without any processing of IP paaksitie the FlexiNet ex-
ecution environment. Further measurements were condudtiedimple service mod-
ules, that implementDP checksumcalculation in C and Java.

As long as the programmable node can keep up with the reckiaeld no packet
loss and, thus, no performance degradation can be obsekgexbon as the node is
overloaded packets must be dropped and, as a result, theviskinaf the incoming
data stream at the server degrades accordingly as showruhe fig Alltogether, the
experiments show that the performance of the Java servickile®is lower than the
one of the service modules written in C. This, however, issuwprising. Furthermore,
the Java modules consume more resources since they regMrobe installed.

Relating the measurements to the above described example RTSP/RTP im-
plementation with heterogeneous service modules, it castaied that the application
of Java for text parsing makes sense. This service modularisopthe control plane
and, thus, is not as performance critical as those modulgeeafata plane. Using Java
to implement such a service module is perfectly suitabletl@nother side, it is also
advisable to write performance critical service modulesgikample, in C.

Flexinet performance measurement C versus Java

T T T T .
100 | i
theoretical —+—
pratical ---x---
UDP 1x (C) -+ %+
95 | UDP 1x (Java) & e FUSEE x |
UDP 2x (C) --m- SR R
UDP 2x (Java) ---o - T
@
=
g - i) ia}
s 0r = a i
°
ks O-Q--=-0---0
H
= o
© .-
4] 85 _-° 4
o
80 - S i
75 L 1 1 L |
5 80 85 9 95 100
Bandwidth (MBit/s)
Fig. 7. Performance measurements
6 Summary

Programmable networks still lack readily available segicAmong many issues that
are responsible for that situation, an important aspecbeaseen in the possibility of
using service modules that are written in differentimplamton languages, dependent
on the implementers preference. On the one hand servicgrégsiand programmers
have varying experience in different programming paradigmeven programming
languages. On the other hand programming languages héexediffortes. The support
of multiple programming languages eases the work of semviodule designing and
programming and may very well raise the productivity witegect to service module
implementations.

Motivated by this idea, FlexiNet was enhanced in order tautimeously support

multiple programming languages even for service modulesygeart of the same ser-
vice module chain.

The integration of C, Java, and Happlets in FlexiNet is seamand transparent in

view to programming interfaces and configuration. In ordegét a close idea on the
overheads involved in the different programming languagesticularly C and Java,
various measurement experiments were conducted. Thertoghehead of Java could
be clearly seen. However, the performance is by far goodgmtuapply Java service
modules, for example, in the control plane as demonstratttei RTSP/RTP example.

References

10.

. Andy Bavier, Thiemo Voigt, Mike Wawrzoniak, Larry Petens and Per Gunningberg.

SILK: Scout paths in the Linux kernel. Technical Report 200®, Uppsala Universitet,
February 2002.

. Kenneth L. Calvert, Samrat Bhattacharjee, Ellen Zecamd,James Sterbenz. Directions in

active networks] EEE Communications Magazine, 36(10):72—78, October 1998.

. Andrew T. Campbell, Herman G. De Meer, Michael E. Koungiiezuho Miki, John B. Vi-

cente, and Daniel Villela. A survey of programmable netvgoACM S GCOMM Computer
Communication Review, 29(2), April 1999.

. Thomas Fuhrmann, Till Harbaum, Panos Kassianidis, Ma8aholler, and Martina Zitter-

bart. Results on the practical feasibility of programmaiséwvork services. I2nd Interna-
tional Workshop on Active Network Technol ogies and Applications (ANTA 2003), 2003.

. Thomas Fuhrmann, Till Harbaum, Marcus Scholler, andtidarZitterbart. AMnet 3.0

source code distribution. Available from http://www.flegt.de.

. Till Harbaum, Anke Speer, Ralph Wittmann, and Martinaethart. Providing Heteroge-

neous Multicast Services with AMnetJournal of Communications and Networks, 3(1),
March 2001.

. A.Hess, M. Scholler, G. Schafer, A. Wolisz, and M. Zittart. A dynamic and flexible access

control and resource monitoring mechanism for active nodesProceedings of the 5th
International Conference on Open Architectures and Network Programming (OPENARCH)
(Short Paper Session), 2002.

. Eddie Kohler, Robert Morris, Benjie Chen, John Jannattd M. Frans Kaashoek. The click

modular routerACM Transactions on Computer Systems, 18(3):263-297, August 2000.

. David MosbergerScout: A Path-based Operating System. PhD thesis, Department of Com-

puter Science, University of Arizona, July 1997.

M. Schlaeger, B. Rathke, S. Bodenstein, and A. Wolismesd Advocating a Remote Socket
Architecture for Internet Access using Wireless LANs, volume 6 no. 1 pp. 23-42. Mobile
Networks and Applications (Special Issue on Wireless imdeand Intranet Access), January
2001.

