Secure Service Signaling and fast Authorization in
Programmable Networks

Michael Conrad, Thomas Fuhrmann, Marcus Scholler,
and Martina Zitterbart

Institut fiir Telematik
Universitéit Karlsruhe, Germany

Keywords: Programmable Networks, Flexible Service Platforms,
Secure Signaling

Abstract. Programmable networks aim at the fast and flexible creation of ser-
vices within a network. Often cited examples are audio and video transcoding,
application layer multicast, or mobility and resilience support. In order to become
commercially viable, programmable networks must provide authentication, au-
thorization and accounting functionality. The mechanisms used to achieve these
functionalities must be secure, reliable, and scalable, to be used in production
scale programmable networks. Additionally programmable nodes must resist var-
ious kinds of attacks, such as denial of service or replay attacks. Fraudulent use
by individual users must also be prohibited.

This paper describes the design and implementation of a secure, reliable, and
scalable signaling mechanism clients can use to initiate service startup and to
manage services running on the nodes of a programmable network. This mecha-
nism is designed for production scale networks with AAA-functionality.

1 Introduction

Programmable and active networks extend programmability of network components
from the network’s edge into the network itself. (See [2,3] for an overview of the ba-
sic concepts). Among its key motivations is the idea to quickly and flexibly create new
services within a network. This could overcome the long deployment-cycles usually ex-
perienced in this area. In such programmable networks, services are created by so-called
service modules. These are executed in an execution environment on the programmable
nodes of the system (e.g., [8]). The user can start such service on demand to support its
already running application.

Varying from approach to approach, programmable nodes are expected to be de-
ployed densely or sparsely. The FlexiNet project (www.flexinet.de), in the context
of which this work has been performed, assumes that the programmable nodes are
placed near the network edge, e.g. as gateway of a (small) sub-network or as addi-
tional programmable nodes within such a sub-network. Typical locations might thus be
the access routers of wireless networks, small offices, home offices, or off-path pro-
grammable nodes at the Internet service provider or customer premises. These off-path
nodes provide supplementary resources for services the on-path routers provide. All



programmable nodes are assumed to be managed by service providers. However, a ser-
vice provider does not need to be identical with the provider operating the respective
network. Moreover, we have to assume that the traffic between the clients, the pro-
grammable nodes, and the service providers could be intercepted and spoofed by mali-
cious devices at will.

Since programmable network nodes are enhanced routers, their availability is crit-
ical for the overall connectivity of clients in the sub-network behind such a node. A
programmable node usually handles data streams for multiple receivers. This makes a
programmable network node an attractive target for any kind of attack. Hence, special
care has to be taken to assure robustness and stability.

The second goal to be achieved is user authentication, authorization, and accounting
(AAA). A service provider might want to offer different kinds of services to different
user groups. Some of the services should be accessible only by local users, other ser-
vices may be used by roaming users, too. Services might require a fee, and therefore
accounting information must reliably be collected by the provider. This means that an
attacker must not be able to forge its identity in order to charge the costs to another user
or to start services he does not have access permissions to.

Scalability of the signaling scheme is the third goal of the design. The mechanisms
used must cope with multiple signaling messages from many users in parallel. The
scalability of the system depends on the resources that handle requests and how these
can be duplicated and distributed over the network.

This paper presents a secure service signaling mechanism that allows the reliable
operation of a programmable network under regular conditions and attacks. Section 2
presents the design of our approach and a threat analysis, followed by implementation
details of the proposed mechanisms in section 3, and section 5 finally concludes with
the summary.

2 A flexible signaling concept

Generally, there are four types of entities in the programmable network scenario we
examine. Without loss of generality we assume that there is a client, a server, a pro-
grammable node, and a service module repository (see fig. 1). The client receives a data
stream from the server and wants to use a special service provided by the programmable
network. The service modules that provide this service are stored in the service module
repository. From there they are loaded onto the programmable node. To start the service
the user sends a so-called service start request to the programmable network. This can
be done either directly or indirectly.

Direct signaling can only be used if the client knows one or more programmable
nodes, e.g. by using a dynamic configuration protocol like DHCP. Static configuration
of clients might also be a solution in some scenarios. With direct signaling the service
start request can then be sent directly to one of the programmable nodes.

Indirect signaling applies when the client has no knowledge about any pro-
grammable node. In this case, the client simply sends its service start request towards
the server’s address. Any programmable node that supports indirect signaling must filter



bypassing packets to discover service start requests. Such a filter is easily implemented
as a programmable network service as shown in section 3.

service

,,,,,,,,,,,,, -
request Server

Client

request
service
module

Fig. 1. Service deployment

The minimum of information that must be contained in a service start request is a
service identifier. How these identifiers are assigned to the services, is outside the scope
of this paper, but we assume that the client knows the identifier, which is associated
with the service it is about to start. Furthermore, we assume that the client’s address is
included in the service start request, too. It is used to notify the client of the success or
failure of its request.

This simple and flexible approach suffices for a client to set up a service. Beyond
the basic signaling exist several issues of the network provider concern e.g. to allow
accounting: Who is requesting a service in the network? Is that person authorized to
do so? And to secure its network infrastructure: How can the programmable nodes be
protected from malicious service start requests? How can replay attacks be prevented?
These questions will be addressed in the following sections:

2.1 A secure approach

To design a secure system, some assumptions about trust relationships of the involved
parties must be clarified. The service provider runs the programmable network nodes,
the service module repositories, an authentication server, and an authorization server.
Replication of these servers is a well studied problem. Scalability and fault-tolerance
with the domain of a service provider are easily achieved in this way. Both servers are
fully trusted by the programmable nodes and the repositories.

The trust relationships of the client are more complicated, especially if clients can
roam between multiple domains. To trust a repository the client must be able to au-
thenticate the repository. After a successful authentication the client will bind a session
key and other temporal data to the proven identity of the repository, and only messages
authenticated with that session key are accepted. Since repository and programmable
node implement a full trust relationship, the client extends its trust to the repository to
all programmable nodes in the domain of this repository. A programmable node proves



its domain membership by authenticating its messages to the client through the knowl-
edge of the session key. After terminating the session all temporarily data gets deleted,
and no further messages authenticated with that key are accepted any more.

On the other hand, the repository needs to authenticate the client to grant or deny
access to its services. Since clients may roam to the domain of the repository, a long
term secret between these two entities can not be assumed. A PKI-based authentication
scheme provides secure authentication with good scalability. For free services such a
scheme is sufficient but not for services that require a fee. Depending on the economic
relationship between the service provider and the client, accounting information must
be available to the repository. This might imply secure communication between the
repository and an accounting server in the home network of the client. The client must
provide information about its accounting server to the repository during authentication
to allow online checking of e.g. available credit.

The protection of the programmable nodes from attacks is the top priority. To this
end, we propose the paradigm that a programmable node only handles authenticated
requests and does not establish any state for unauthenticated requests on the node. On
the other hand, for administrative reasons, user authentication and authorization data
should not have to be distributed to every programmable node. We accomplish these
two fundamental requirements by combining both, the authentication scheme (used for
initial client contacts) and the authorization scheme (used for service requests, etc.)
with a special request redirection mechanism. In addition we introduce a general se-
curity scheme for communication between client and programmable node, exemplarily
shown for service shutdown. The design is complemented by a rekeying scheme and
the management of session state.

Basic constraints As described above, we do not assume any pre-shared secret be-
tween the client and the programmable network provider. However, since a pure
certificate-based approach suffers from the much greater computational overhead of
public key cryptography, as compared to a hash function or secret key cryptography,
the use of asymmetric cryptographic algorithms should be limited as much as possible.
Experiments on hand-held devices like a Palm (20 MHz - Dragonball) were presented
in [5]. They show that only 0.14 RSA sign operations can be performed per second,
rendering a application based on such operations unusable.

2.2 Authentication scheme

Our proposed authentication scheme uses public key algorithms to prove the client’s
identity to the network provider, to prove the identity of the service provider to the
client, and — at the same time — to distribute the keys for the HMAC algorithm that
is later used for the authorization scheme and client to service communication. The
process is as follows:

The client generates an authentication request containing its identity and the socket
(IP-address and UDP port number), at which he will listen for the response. Before
sending this request to the programmable node the client creates a MAC (message au-
thentication code) for the message. This is a digitally signed hash value of the message,



and is appended to it. Thereafter, the request is sent to a programmable node by direct
or indirect signaling.

The programmable node forwards the request to the authentication server using the
request redirection mechanism, where the identity of the client is checked. If the au-
thentication fails, no error message is sent to the client, to prevent the system from re-
sponding to flooding attacks. Otherwise the authentication server adds the session key,
a key lifetime, two sequence numbers, its certificate, and the IP-address of the autho-
rization server to the client message to create the response. The secret key is encrypted
with the client’s public key and the complete authentication reply is digitally signed by
the authentication server. The response is sent to the IP address and the port number of
the client contained in the request.

If the authorization server is not collocated with the authentication server the ses-
sion dependent data must be transferred to the authorization server, too. Therefore, the
authentication server sends the session key and the two sequence numbers to the autho-
rization server in an additional message. This message must be integrity protected and
confidentially transferred to the programmable node.

The client validates the server’s certificate first, either on its own or by an online pro-
tocols like OCSP [12] or SVCP [11]. Then it checks the signature and finally decrypts
the session key and stores the sequence numbers.

Message (1), (2) and (3) in fig. 2 are the message of the authentication scheme.

auth req (1)

Client AMnode

redirect
auth req (2)

service
start req (5

service

Authentication
start res (6)

Server

Authorization
Server

Fig. 2. The secure signaling scheme

Threat analysis If an implementor uses state-of-the-art encryption (e.g. RSA) and
hash function (e.g. SHA1) it is reasonable to assume that attacks on these will not be
successful. Other kinds of attacks must be analyzed more detailed: DoS attacks and
replay attacks.

Since the programmable node only forwards authentication requests to the authen-
tication server without establishing any local state, the resistance against DoS attacks



solely depends on the address rewriting functionality. As shown in [4] our system can
handle simple UDP header manipulations in real time up to 100Mbit/s. Therefore, the
authentication server might become a bottleneck if DoS attacks are launch at the system.
Since the authentication server checks the authenticity of any request, a flooding attack
might lead to CPU exhaustion of the server. No further real requests can be handled at
the authentication server, thus preventing the authentication of new users. It is the in-
tention of the design to sacrifice the authentication server in favor of the programmable
nodes. To limit DoS attacks during authentication, an additional cookie exchange or
installment of filters at the programmable node might further reduce the impact of DoS
attacks. Such filter installment and configuration is still a subject of our research and is
not further covered here.

The second type of attack is the replay attack. The attacker monitors the messages
exchanged between client and programmable node, and replays these messages some-
time in the future. This attack can be prevented if the authentication server creates
different session keys for every request. An attacker gets a positive authentication re-
sponse from the authentication server but can not replay any further sniffed messages,
because these messages can not be authenticated. To prevent the attacker from replay-
ing the authentication request infinitely until the authentication server picks the same
session key by chance, a monitoring facility at the authentication server should log all
authentications, and might disable the authentication of users in case of such an attack
for a limited time.

Authentication result All further communication between the client and the pro-
grammable network can be protected with the now established shared secret. During
further communication, the sequence numbers are incremented and checked by the re-
spective recipient to be in increasing order. Any message with a smaller sequence num-
ber is silently discarded. Afterwards the recipient checks the authenticity of the mes-
sage. If this check succeeds, the receiver stores the sequence number of this message as
the new lower boundary; otherwise the message is silently discarded. This mechanism
prevents replay attacks of sniffed messages. (We accept that out-of-order messages are
discarded and have to be retransmitted with a new sequence number if necessary.)

2.3 Authorization scheme

After a successful authentication the client can request one or more services to be started
on the programmable net (Note that the node selection is part of the service evaluation
process [8] and is not related to the authorization request.) The authorization server
checks the access rights of the user with respect to the requested service. As with the
authentication server, the authorization server can be a stand-alone server or be collo-
cated with the service module repository.

The client creates an authorization request, uses the session key to generate a MAC
and appends the MAC to the message. Besides the user ID and the sequence number,
this request contains the service ID and the service parameters (if necessary). The mes-
sage is then sent to the authorization server indicated in the authentication response
(message (4) in fig. 2). This server first checks the sequence number, then the MAC,
and finally processes the request, if all checks have succeeded.



If the user is not allowed to start this service, an error notification is sent to the client,
indicating why the access was denied. Otherwise the authorization server informs the
programmable node that the service can be started (message (5) and (6) in fig. 2). After a
successful service startup on the programmable node, an authorization response is sent
to the client (message (7) in fig. 2). This response carries any necessary information
to allow client to service communication: IP address of programmable node, id of the
service on that node, and two sequence numbers.

The client derives a new session key for this service from the authorization session
key and the two sequence numbers from the server. To allow secure client to service
communication, the corresponding session state containing this session key, and the
sequence numbers has to be transfered to the programmable node, too. This is accom-
plished by an extra message from the authorization server to the programmable node.
The client to service communication is protected using the session key and the sequence
numbers. Section 2.4 shows how the keep-alive messages are protected by this key.

Rekeying The introduction of sequence numbers, to protect the communication be-
tween client and programmable node against replay attacks, makes mechanism to han-
dle the wrapping of these sequence numbers necessary. As soon as a sequence number
cannot be increased, new session keys must be requested from the authorization server.
The client sends an authorization request to the authorization server, as described above,
containing additionally the service dependent data to inform the server for which ser-
vice new session keys are requested. The authorization server generates a new session
key and transfers this key plus the initial sequence number for this security association
to the client and the programmable node.

Threat analysis The authorization scheme is resistant against replay attacks through
the usage of sequence numbers. During authentication two sequence numbers have been
transferred to the client. The client uses the first one to authenticate messages sent to
the server, the other one to receive message from the server. As long as the session key
is known only to client and server, it is reasonable to assume that no attacker can create
a valid MAC for a message with a valid sequence number.

Including the IP address of the authorization in the authentication response, informs
the client reliably to which authorization server the security association has been estab-
lished. This information assures the address of the authorization server to the client,
even if an attacker manipulated the unprotected IP header of the authentication re-
sponse.

Third, the scheme has a good resistance against DoS attacks. Using the first message
of the authorization scheme, the client must prove, that it has access to the session key.
The authorization server first checks the authorization request, and only in case of a
valid request the programmable node is involved in the process. Again a DoS attack on
the system might bring down the server, but is limited and no programmable node is
disrupted.

The creation of session state on the programmable nodes is delayed, until the
client has proven access to the session key. This implies that session state on the pro-



grammable node is only created for actual running services on that node. As soon as
the service is stopped, the node can purge any service dependent data.

Authorization result The requested service has been set up on the programmable node,
and the user is informed that he can use the service. If client to service communication
is supported by this service, all address information of the service is transferred to the
client. Depending on the service, reconfiguration requests and keep-alive messages can
be sent directly from client to the service instance.

2.4 Service lifetime

To explicitly support roaming users, we propose a soft state approach for services on
programmable nodes. Since client to node communication can break down suddenly,
the client cannot always send a service stop request to the node. Service execution
and accounting of service usage must be stopped by other means. A service execution
based on a soft state approach enables the desired behavior, but requires the client to re-
fresh the state periodically. If no refreshment message reaches the node for a configured
amount of time, the service is stopped automatically.

The message to refresh the state of the service must be protected against manipula-
tion and replay attacks, too. The client uses the session key and sequence numbers to
generate this request and sends the request directly to the programmable node, the ser-
vice is executed at. The mechanisms to check the message authenticity are performed,
as during the authorization.

3 Implementation

Within the FlexiNet project we have implemented an exemplary client signaling GUI,
the active node, and the service module repository. The authentication server and the
authorization server are both collocated with the service module repository. Every pro-
grammable node creates a TLS tunnel [6] to its configured service module repositories
during system startup. In contrast to the ordinary use of TLS, we demand mutual au-
thentication of the communication peers. A programmable node uses the TLS tunnel to
securely download service modules from the service module repository. Additionally,
we will use this tunnel to exchange service start request and response messages between
programmable nodes and the authorization server.

For user and machine identification we are using X.509 certificates, which carry
RSA keys for the signature generation and validation. As cryptographic hash functions,
HMAC/SHAL are used in our extended signaling scheme.

This section details implementation issues of the message redirection mechanism,
which is followed by an example of our message format.

3.1 Redirection mechanism

To filter signaling messages at a programmable node, a special service module — called
signaling filter module — must be installed. It is started during system startup and runs in



a special environment — the so called framework execution environment. This environ-
ment, and thereby the signaling filter service, cannot be stopped by normal means. The
service is active as long as the programmable node is working. Furthermore, the signal-
ing filter service is the only service allowed to forward messages to the programmable
node’s framework. The main task of the framework is node management, which in-
cludes service setup and termination. The framework instantiates a new execution en-
vironment every time a new service gets started on the programmable node, and the
required service modules are loaded into this environment. If the required module is
not stored in the local module cache, the framework has to download that module from
the service module repository, via the established TLS tunnel.

The signaling filter service installs three network hooks during startup, in order to
filter UDP ports 5000, 5001, and 5002. While the hook on port 5000 is accepting all
bypassing traffic for any destination, the two other ports only accept messages directly
addressed to the node. In our implementation the client uses port 5000 to indirectly send
the authentication request to the programmable network. This allows for clients to dis-
cover a programmable node without knowledge about the network topology. The client
sends its signaling request towards the server, and if a programmable node is located
on the path between client and server, it will filter this signaling message. Addition-
ally, port 5001 is used by clients to directly signal the authentication request. All other
messages, like keep-alive requests, have to be sent to port 5002.

The messages, which a programmable node filters on port 5000 or 5001, will
be redirected, without any processing, to a connected service module repository. To
achieve this, the signaling filter service just has to replace the destination address in the
UDP packet and to recalculate the UDP checksum, if used. Thereby, no state has to be
established, and the node is protected against flooding attacks.

Any message filtered on port 5002 must be forwarded from the signaling service to
the local framework of the programmable node. Here the message gets re-instantiated,
and its signature is verified. Only messages authenticated with the session key are ac-
cepted at port 5002. All other messages get immediately discarded.

3.2 Signaling message format

In an abstract signaling class three types of messages — request, response for syn-
chronous communication, and trap for asynchronous communication — and the basic
attributes of these signaling messages are defined. The basic attributes are : command,
group, msg-id, user-id, client and node sequence number. Every implementation of a
message must be derived from this abstract class and can add message dependent at-
tributes. Therefore, the implementation must assign a name and a type to the attribute,
and provide methods to get and set the attribute values.

Authentication request Fig. 3 shows a serialized signed authentication request, which
always consists of two parts: a message part (line 03-08) and a signature part (line
09-11).

The command authenticate within the group Access denotes, that a client
wants to authenticate itself to the system. The ID of the client is stated in attribute user-
id. The two sequence numbers are not used during authentication and are set to zero.



01 <flexinet version="2.6">

02 <signaling>

03 <request client-seg="0" command="authenticate" group="access"

04 msg—-1d="42" node-seg="0" user-id="client@flexinet.de">

05 <scalar name="ip-protocol" type="string"><string>udp</string></scalar>

06 <scalar name="udp-port" type="int"><int>5000</int></scalar>

07 <scalar name="ip-address" type="string"><string>192.168.0.1</string></scalar>
08 </request>

09 <signature algorithm="SHAlwithRSA" msg-id="42" user="client@flexinet.de">

10 UlQelz/9drf75zFA7JH18AWalz/VTzaFmsFIX6glWQYAEAWPtoXTM1d. . .

11 </signature>

12 </signaling>
13 </flexinet>

Fig. 3. Authentication request message

The id attribute is used to bind a signature to a request. This binding is necessary if
multiple request, response, and trap messages are sent within a single signaling mes-
sage. Besides these basic attributes, an authentication request contains attributes like
the client’s IP address, port number, and the type of the transport protocol.

The signature part states the algorithm used to generate the signature, which is
bound to the message part with the same id. The signature is computed using the key
of the denoted user. In the example above, SHA1withRSA is used as the signature al-
gorithm. Since the object representation is unsuitable for signature generation, we have
chosen the canonical XML serialization as input to the signature algorithm.

01 <flexinet version="2.6">
02 <signaling>

03 <request client-seqg="3749" command="start" group="service"

04 id="46" node-seqg="63953" user="client@flexinet.de">

05 <scalar name="ip-protocol" type="string"><string>udp</string></scalar>
06 <scalar name="udp-port" type="int"><int>5000</int></scalar>

07 <scalar name="ip-address" type="string"><string>192.168.0.1</string></scalar>
08 <scalar name="service-id" type="int"><int>23</int></scalar>

09 <scalar name="private-service-option" type="int"><int>3</int></scalar>
10 </request>

11 <signature algorithm="HMACSHAL" id="46" user="client@flexinet.de">

12 cvXzFkmém2uc2NypaQ8Tbsai5RE=

13 </signature>

14 </signaling>
15 </flexinet>

Fig. 4. Service start request message

Service start request To start a service, the client sends an authorization request (see
fig. 4 to the authorization server. The message part denotes the command start within
the service group (line 03). Sequence numbers and message id are set according
to the current client state (line 03-04). In addition to these basic attributes, the client
specifies the desired service using the service-id attribute (line 08) and service
parameters using the private-service-option attribute (line 09). To receive an



authorization response the attributes ip-address, ip-protocol, and udp-port
(line 05-07) are set as in the authentication request.

The signature is generated using the HMAC—-SHA1 algorithm and the shared secret.
Again the id binds this signature to the corresponding message part.

4 Related work

The related work can be divided into three categories: signaling protocols, general au-
thentication and authorization protocols, and authentication and authorization in pro-
grammable networking.

GIMPS [13] is a draft of a general signaling protocol. The authentication schemes
incorporated assume that the client knows his communication peer, which is not always
true for programmable networks.

In the area of general authentication and authorization protocols, many solution
for different scenarios have been proposed. EAP [7] is an extensible authentication
protocol used for network access control. The protocol was designed to authenticate
a dial-in user to the network access server. A prerequisite of the protocol is that the
user authenticates himself towards the next hop, since EAP is a layer 2 protocol. This
behavior is not applicable to programmable networking, since the programmable node
might be multiple hops away from the user.

Kerberos [10] provides user authentication based on symmetric key algorithms. A
user authenticates himself via user name and password, and uses tickets to authenticate
himself towards the resources of the network. The drawback of Kerberos is that it can-
not support roaming users moving into a Kerberos domain. In our opinion, support of
wireless clients is essential for programmable networking.

Key exchange protocols always implement an authentication scheme, and addition-
ally solve the key distribution problem. TLS [6] is a TCP-based security protocol in-
cluding a key exchange. The modifications to the protocol, which would be necessary
to support indirect signaling, are non-trivial. Nonetheless, some basic mechanisms of
TLS, like server based key generation, are reused in our design. IKE [9] is another
key exchange protocol. It is based on UDP and fits many needs outlined, but the key
generation mechanism can only use the Diffie-Hellmann algorithm. Furthermore, the
complexity of the protocol is a known drawback of IKEv1, but might improve with
IKEv2, whose standardization should be completed in the near future.

Within the active and programmable networking area, only little research on secure
signaling has been introduced. In [1] an analysis of security aspects and a possible
solution are provided, but some forms of attacks have been neglected, like DoS attacks
on the active router. To verify a request, the active router must first download the module
from the code server and then verify the authenticity of the request. An attacker can
easily mount an DoS attack on the active router by requesting different modules each
time.



5 Conclusion and Future Work

We have presented a secure and scalable signaling scheme for user authentication, ser-
vice startup, and service management. The authentication scheme can be used for direct
and indirect signaling in the case, that the nearest programmable node is not known to
the client. The usage of asymmetric cryptographic algorithms is thereby limited to the
authentication process and all further messages are protected by cryptographic hash
functions. The presented signaling scheme resists active attackers and stems the threats
of denial of service attacks.

A secure evaluation scheme and a secure service relocation scheme will be available
shortly and presented in the near future. These schemes will be build from the same
building blocks as the presented authentication and authorization scheme, keeping the
protocol complexity modest, and thereby lighten the analysis of the protocol.

References

1. M Bagnulo, B. Alarcos, M. Calder6n, and M. Sedano. ROSA: Realistic Open Security
Architecture for active networks. In Fourth Annual International Working Conference on
Active Networks (IWAN), 2002.

2. Kenneth L. Calvert, Samrat Bhattacharjee, Ellen Zegura, and James Sterbenz. Directions in
active networks. IEEE Communications Magazine, 36(10):72-78, October 1998.

3. Andrew T. Campbell, Herman G. De Meer, Michael E. Kounavis, Kazuho Miki, John B. Vi-
cente, and Daniel Villela. A survey of programmable networks. ACM SIGCOMM Computer
Communication Review, 29(2), April 1999.

4. M. Conrad, M. Scholler, T. Fuhrmann, G. Bocksch, and M. Zitterbart. Multiple language
family support for programmable network systems. In Proceedings of the 5th Annual Inter-
national Working Conference on Active Networks (IWAN), 2003.

5. Neil Daswani and Dan Boneh. Experimenting with Electronic Commerce on the PalmPilot.
Lecture Notes in Computer Science, 1648:1-16, 1999.

6. T. Dierks and C. Allen. The TLS protocol version 1.0. RFC 2246, Internet Engineering Task
Force, January 1999.

7. N.Freed and S. E. Kille. Network services monitoring MIB. RFC 2248, Internet Engineering
Task Force, January 1998.

8. T. Fuhrmann, M. Scholler, C. Schmidt, and M. Zitterbart. A Node Evaluation Mechanism
for Service Setup in AMnet. In Proceedings of the 13th ITG/GI-Fachtagung Kommunikation
in Verteilten Systemen (KiVS’2003), Kurzbeitrdige, Praxisberichte und Workshop, 2003.

9. D. Harkins and D. Carrel. The Internet key exchange (IKE). RFC 2409, Internet Engineering
Task Force, November 1998.

10. J. Kohl and C. Neuman. The kerberos network authentication service (V5). RFC 1510,
Internet Engineering Task Force, September 1993.

11. A. Malpani, R. Housley, and T. Freeman. Simple Certificate Validation Protocol (SCVP),
April 2004.

12. M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. J. Adams. X.509 Internet public
key infrastructure online certificate status protocol - OCSP. RFC 2560, Internet Engineering
Task Force, June 1999.

13. Henning Schulzrinne. GIMPS: General Internet Messaging Protocol for Signaling, June
2003.



