
IEEE Copyright Notice

c© 2009 IEEE. Personal use of this material is permitted. However, permis-
sion to reprint/republish this material for advertising or promotional pur-
poses or for creating new collective works for resale or redistribution to servers
or lists, or to reuse any copyrighted component of this work in other works
must be obtained from the IEEE.



A Node Architecture for 1000 Future Networks
Lars Völker∗, Denis Martin∗, Ibtissam El Khayat†, Christoph Werle∗, Martina Zitterbart∗
∗Institut für Telematik, Universität Karlsruhe (TH), Germany †Ericsson GmbH, Germany

Abstract—One possible key technology for the Future Internet
is network virtualization. It allows to run numerous virtual
networks in parallel, each of which can be adapted towards
different requirements, intended use, or applications used. When
consequently using network virtualization, it allows not only
to have very specialized networks but also allows to run new
protocols and services in different networks. This can give
opportunities for rapid service deployment, especially for services
based on new protocols.

Currently a lot of research is concerned with network vir-
tualization or related aspects like management or signaling of
network virtualization. This paper however is different, since it
looks on network virtualization from another angle. We describe
our Node Architecture for the Future Internet, which uses
network virtualization as a fundamental concept. It has the goal
to give users access to a vast number of virtual networks and
exploit the possibilities of network virtualization.

I. INTRODUCTION

One of the goals of the 4WARD Project1 is to let 1000
networks bloom. With a vast number of networks one could
supply networks for different applications, requirements, and
even users. And all networks could use completely different
protocols. This gives many opportunities to the users and
providers, which today would be either not possible or too
expensive. The development towards network virtualization
can be seen as an enabler for such concurrent operations of
multiple networks.

When having the vast amount of networks we envision,
every node might be part of a multitude of virtual networks
in parallel. As example, a user could use different virtual
networks for different applications. He could have a high
bandwidth network for high definition video streaming, a
specially secured network for the transfer of sensible infor-
mation, an information centric network for finding current
news and reports, and a latency optimized network for voice
communications. Each of which could use different Network
Architectures, with, for example, different addressing schemes
and different protocols.

To fully facilitate the possibilities of network virtualization,
the architecture of the end nodes needs to be capable of
supporting a multitude of networks. Within this paper details
of such a Node Architecture (briefly introduced in [1]) are
presented. The Node Architecture was designed with the
following requirements in mind:

• Be efficient, flexible, and extensible
• Support multiple virtual networks with possibly different

architectures in parallel
• Allow new naming and addressing schemes

1The EU FP7 4WARD Project – http://www.4ward-project.eu

• Support novel communication paradigms, like Network
of Information [2]

• Support different approaches for creating protocols
The main contributions of this paper include a Node Archi-

tecture using so-called Netlets for exploiting the possibilities
of network virtualization, and enhanced application and net-
work interfaces to communicate requirements and properties.
A design process for future networks was sketched in [1], a
selection process for automatic selection of virtual networks
is presented in [3]. Together, this provides a tool-set for using
a multitude of networks on an end node.

This paper is structured as follows: Section II presents the
Node Architecture including the main concepts to achieve the
aforementioned goals. In Section III an example of one of
the core components of the Node Architecture – the Netlet –
is presented. Related work is discussed within Section IV.
Conclusions and outlook are provided in Section V.

II. THE NODE ARCHITECTURE

The Node Architecture proposed in this paper was designed
to support network virtualization and to run multiple networks
side-by-side. It allows to add, modify, and remove highly spe-
cialized communication protocols for (virtual) networks with
possibly different addressing schemes. Therefore, exchanging
one set of protocols with another is possible without modifying
any application software or hardware in the future. This way,
applications may communicate via a multitude of possibly
virtualized networks without requiring them to know about
the underlying network architecture – a clear improvement for
example over today’s socket API, where the application is
at least involved in name to address resolution and in the
selection of the protocol it wants to use for communication.

Our proposal for a new Node Architecture is depicted in
Figure 1 and described in the following subsections. This
figure shows the architecture of an end system, but it can
be easily transformed into an architecture for an intermediate
system (e. g. a router) in removing application and user related
functionality.

A. Overview

Netlets as used in Figure 1 are the fundamental concept of
our Node Architecture to allow the Future Internet to smoothly
evolve with multiple, parallel networks. A Netlet can simply be
seen as a container to encapsulate today’s and future network
protocol stacks. With the principle of hiding protocol details
but yet providing a number of properties via its interfaces,
Netlets can be easily exchanged without the need to change
application or network interfaces. They are described in more
detail in Section II-B.



NA

Logical View of Node

Application

NA Manager

N
et

le
t C

re
at

or

M
an

ag
em

en
t

Tuning /
Optimization Cache

Netlet
Selection

Name &
Addr

Mapper

Decision
Engine

Multiplexer

Network
Accesses

UP

User policies for
network selectionUPApplication

requirementsAR

AR

NANA

N
et

le
t

N
et

le
t

N
et

le
t

N
et

le
t

Figure 1. Node Architecture

The Netlet Selection component provides a node-local reg-
istry of all currently active Netlets. Based on the Netlet
properties and the requirements the application has on the
communication association, the Netlet Selection component
chooses – with the aid of the Name & Address Mapper and
the Decision Engine – the Netlet that fits the application’s re-
quirements best. If the underlying network’s properties change
during the life-time of a communication association, a Netlet
may also be exchanged by another. If none of the active Netlets
can be used, a new one might need to be instantiated (see
Section II-F). While the Netlet Selection block contains the
generic selection mechanism, the actual selection algorithm
is executed within the Decision Engine. Besides the Netlet
properties, the Decision Engine has to take several other
parameters into account, e. g. user, network or administrator
policies for the network selection. In addition, the Netlet
Selection has to check, if the desired remote node or object
is reachable via a specific Netlet. To obtain this information,
the Name and Address Mapper has to be inquired. The Name
and Address Mapper is responsible for any name resolution
activities. More details about the Netlet Selection and Decision
Process are presented in [1], [3].

Architecture-specific multiplexers allow to run multiple
Netlets on a single Network Architecture. In order to have
multiple different protocols running on parallel over the same
network, streams produced by different Netlets need to be
separated. An example in today’s IP networks would be the
use of Upper Layer Protocol IDs, e. g. to identify UDP and
TCP. This example also shows that there might be a need for a
common header field, and thus a common basic understanding
of a PDU format is necessary. Since this would already
be an invariant within a network architecture, we allow for
multiplexers that differ from architecture to architecture – this
avoids invariants across architectures.

A Network Access is an interface to the actual network.
It may be compared to today’s network interface, but it
is intended as a more flexible abstraction for any type of
networks, e. g. for physical networks as well as for virtual
ones. The Network Access Manager can be seen as a registry
where the different Network Accesses register and where the
mapping to the network architecture running on the attached
networks is done.

The Tuning and Optimization Agent constantly monitors the

conditions of the Netlets, the network, and the applications.
If changes in the conditions occur, it tunes configuration
parameters to adapt the Netlet as good as possible to the
new conditions. To support the tuning, Netlets may have
configuration parameters that allow to modify their behavior
accordingly. This could be, for instance, the maximum data
unit size they are allowed to use or the encryption strength to
be used by Netlets supporting encryption. These parameters
may be needed to be adapted if, for instance, the properties
of the underlying network change (e. g. because of a hand-
over from a wired to a wireless connection type). The Tuning
and Optimization Agent has therefore to interoperate with the
management component.

Finally, the Management component provides network and
node management facilities. It may access any of the other
components described here to obtain information or to trigger
tuning and configuration of them via the Tuning and Opti-
mization Agent.

B. Netlets: Container for Future Internet protocol stacks

Three different types of Netlets can be distinguished:
• Regular Netlets are used to implement communication

protocols an application uses to communicate with an-
other. One Netlet could hold, for example, a protocol
stack comprising HTTP, TCP, and IP, so that it can be
used to browse websites.

• Control Netlets commonly are used for control protocols.
A routing protocol, for instance, would be implemented
as a Control Netlet. Control Netlets allow us to structure
protocol stacks using different Netlets: the regular Netlets
for the application protocols and the Control Netlets for
the control protocols.

• Interop Netlets are a combination of two Netlets and
implement interoperability functions. They are used to
connect different networks possibly containing different
network architectures. Therefore, Interop Netlets may
need to implement for example address mapping, pro-
tocol translation, or even content transcoding. Since in-
teroperability between networks is a very complex, but
interesting subject in itself, it is not covered further in
this paper.

NAI

D
ata

C
ontrol

AI

Regular Netlet Control Netlet Interop Netlet

Application Interface (AI)

Data Plane

Control Plane

Interop. Function (IF)

Network Access Interface (NAI)

Tuning Interface (TI)

NAI

AI

D
ata

C
ontrol

NAI

AI

NAI

IF

D
ata

C
ontrol

D
ata

C
ontrol

NAI

D
ata

C
ontrol

Figure 2. The types of Netlets

The interfaces of a Netlet need to be well defined in order
to be able to easily exchange Netlets. A regular Netlet (left in
Figure 2) has a set of important interfaces:



• The Application Interface (AI) is used to connect the
Netlet to applications.

• The Network Access Interface (NAI) is used to connect
Netlets to Network Accesses.

• The Tuning Interface (TI) is depicted as a diamond
in Figure 2 and is used to adjust the Netlet and its
behavior at runtime. This allows the Netlet to adapt to
changed requirements of the application and changes in
the underlying network. For instance, if the bit error
rate of the network increases, the error control could be
adjusted to better cope with these changed conditions.

Regular Netlets are structured internally into a control
and data plane. This is based on [4], which distinguishes
between tightly bound mechanisms (Data) and loosely bound
mechanisms (Control) of a protocol. Control mechanisms not
at all related to data streams (e. g. routing) are commonly
realized as separate Control Netlets and not within the control
plane of a regular Netlet.

The implementation of a Netlet itself may be of arbitrary
nature – it could be compiled from lightweight, handwritten
code or could be generated using a complex, formal definition
taking best practices in Software Engineering into account.
While we do not require a specific design for a Netlet, we are
currently aiming to provide design methods for a structured,
verifiable composition approach for protocols. Besides that, it
is also possible to implement existing approaches, like e. g.
RNA [5] and SILO [6] as Netlets.

C. A new Application Interface

Today’s applications commonly use the socket API or a sim-
ilar interface to communicate. To communicate with another
application entity in the network, the application has to supply
the address of the node and the address of the service it wants
to reach, e. g. port 80 for HTTP. Furthermore, the application
has to make a selection of the transport service to be used,
i. e., UDP or TCP in order to demand either a best-effort
or a reliable transport service. For example, if an application
wants to access the web data of http://www.internal.tld, it has
to contact e. g. the host 10.11.12.13 using the TCP protocol
and port 80. In order to be able to provide this information,
the application has to trigger a name resolution to obtain the
address information related to the URL (commonly using DNS
via a resolver library).

It becomes obvious that such a behavior is not suited for
a node connected to 1000 networks with possibly different
addressing schemes. The decision of which address a name
is resolved to may have major consequences on the possible
networks the system can select. Looking at IPv4/IPv6 stacks
today, the common strategy is simple: if the name resolution
returns an IPv6 and an IPv4 address, just try IPv6 first and
IPv4 only if IPv6 fails. This strategy is an obvious choice for
promoting usage of IPv6, but might not be actually what is best
for the user. The path IPv6 takes through the network might
be worse than the IPv4 path. For example, the IPv6 path could
be much longer and introduces additional delay. So for latency

critical applications, the IPv6 path might be unacceptable,
while the IPv4 path would have been good enough.

With the vision of 1000 networks in the future, such
a strategy should be replaced. A strict order of networks
would not lead to efficient usage of networks based on the
properties of them. Therefore, the decision which network
should be used, has to be made by the system based on the
requirements provided by the application and the properties of
the underlying network.

This leads us to the following changes with respect to
traditional application interfaces:

• Address by Name (and not only by address)
• Transport of application (and user) requirements
Address by Name will allow the application to just pass

the name of the host, service, or information it wants to
reach and to let the system take care of the next steps.
Although this implies a global naming scheme across all
network architectures, this also opens up opportunities for
novel addressing schemes. One example of such an approach
would be addressing information directly in a search engine
like but distributed fashion. For such a global naming scheme,
we envision a scheme similar to today’s URI scheme. Any
other hierarchical naming scheme would fit as well, of course.
For name resolution, the Name & Address Mapper (compare
to Figure 1) will query possible Netlets in order to obtain
knowledge if a remote host or object given by a name can be
resolved in a specific architecture – a vital information for the
Netlet selection process. This ensures that novel approaches
can be implemented inside Netlets and therefore can be easily
used by any existing application without the need to modify
these applications.

Application Requirements must be transported by the appli-
cation interface, if the application wants to be able to affect the
selection of the network. The application could, for example,
require an encrypted and authenticated transmission. Thus, the
application is relieved from protocol specific expertise.

D. A new Network Interface

When running 1000 networks in parallel, the common case
will no longer be that a system is connected only to a single
physical network. More likely, it will have connectivity to
several virtual (and physical) networks. Today’s abstraction of
the network interface is based on physical network interfaces
only and on systems with a small number of connected
networks.

With the availability of 1000 virtual networks it is time to
rethink the network interface. The redesigned interface should
transparently support network virtualization and supply more
information about the underlying network. For selecting the
best Netlet for a communication association, we need infor-
mation concerning the underlying network, e. g. with respect
to latency, packet loss, and energy consumption. Therefore, the
network interface needs to be able to supply such information.
We call this new interface Network Access (NA).

The generic NA can be specialized by different types. For
instance, a physical NA is used for physical networks, whereas



a virtual NA is used for virtual networks, respectively. While
most of the interface functions and provided properties are
identical for both (and therefore located in the generic NA),
they slightly differ in their management and control functions,
e. g. send power control for physical NAs and virtual network
setup functions for virtual NAs.

E. Connecting Netlets and Network Accesses

When a Netlet is instantiated, it connects to the Netlet
multiplexer for the network architecture it belongs to. The
Netlet can then communicate via all Network Accesses that
are connected to the multiplexer. NAs can only connect to
a multiplexer that at least has a basic understanding of the
network architecture running in the network to which the NA
provides access (see Section II-A). Commonly, it only makes
sense to use protocols in one network that are at least at a
basic level compatible to each other, so that they can run
side-by-side and that they can be identified and separated
from one another. Since protocols are part of the network
architecture, one can even say that Netlets have to fit to the
network architecture of the network provided by the NA.

To determine the network architecture of a given NA,
different methods can be used. These range from simple static
solutions to auto-discovery mechanisms. Simple solutions in-
clude manual and application-based associations of NAs to a
multiplexer. The manual setup is commonly done by a user or
administrator and is useful for small networks with a limited
number of nodes that only connect to a limited number of
networks. However, the high amount of user control of this
method yields to very low user friendliness. Alternatively,
the application can specify via the requirements it has to
provide to the Netlet Selector that a certain network and
network architecture should be used. This can be very useful
if applications come with their own specialized networks, e. g.
for television streaming or video telephony.

Also auto-discovery of network architectures may be pos-
sible. Automatically determining the network architecture of
a NA’s network can be achieved by different approaches. One
solution would be that the network signals which architecture
it is using. For virtual networks, this signaling could be done
inband or outband: outband signaling can be done within the
management plane of the virtualization infrastructure, while
inband signaling would run inside the network architecture.
The latter would have the advantage that it can also be used
by networks connecting directly via a physical NA.

Examples for inband signaling of the network architecture
are the use of magic packets or frames, or the use of shim
headers providing the required information about the architec-
ture. Magic packets/frames are announcements PDUs, which
can be listened for. These special PDUs have to be defined for
(possibly) all network architectures and would be therefore an
invariant for all network architectures. Hence, inband signaling
of network architectures are not a viable overall solution, but
could be advantageous for a family of network architectures
designed to work side-by-side this way.

F. Netlet Creator and Netlet Repository

If none of the existing Netlets fulfills the requirements a
application has for a communication association, new ones
need to be instantiated. Also, if a node is connected to a new
network running a different architecture, Control Netlets for
e. g. routing information need to be instantiated. Therefore,
the Netlet Creator shown in Figure 1 is an important part
of our Node Architecture. The Netlet Creator instantiates the
Netlets using a Netlet repository. This repository holds all
available Netlets and can be filled with additional ones if the
node must be able to connect to new networks running a yet
unknown network architecture. In order to fill this repository
with Netlets for instantiation, we are also developing a design
process, which allows to develop Netlets and virtual networks
in a very short time [1].

III. A NETLET EXAMPLE

In order to concretize the interior of Netlets, we sketch
a brief example for a Netlet that provides reliable transport
functionality. The Netlet is depicted in Figure 3.

Multiplexer

Bit Error Checker

Serializer

Demultiplexer

Deserializer

Bit Error Checker

Ack InfoEvent

Ack-Request

FEC

Connection specific
Concatenation

App Stream

Segmentation

Cgst
Control

Flow
Control

TT Error
Control

T

Netlet Multiplexer

Timer

Queue
Scheduler

Figure 3. Example Netlet for Reliable Transport

There are basically two main data paths, one for outgoing
data on the left and one for incoming data on the right. Most
operations done for outgoing data have its counter parts at
the remote node for incoming data. Therefore, building blocks
realizing such operations are grouped in the figure.

At the top, the application data is passed from and to the
Netlet via the Application Interface. Since this example is
inspired by TCP, we also provide a stream-oriented interface
for this Netlet. Therefore, as a first step, we need to segment
the application stream that is to be sent. Likewise, received
data needs to be concatenated again in order to deliver a
stream to the application. At the bottom, incoming data as
received for instance directly from the Netlet multiplexer is
first checked for bit errors. The serializer (resp. deserializer)
block is responsible for marshaling (resp. unmarshaling) the
data and header information to be sent (resp. received). The
multiplexer above the serializer does connection multiplexing,
e. g. with port numbers as used in TCP.

Everything above this within the dashed box in Figure 3
has connection specific state. The central blocks here are the
ordered queues for incoming and outgoing data with their
respective queue schedulers. While the queue scheduler of the



incoming data queue is rather simple (i. e. pass all complete
and correct data to the application if it is ready to receive it),
the outgoing queue scheduler is a bit more complex because of
congestion, flow, and error control. On one hand, the scheduler
has to request for permission to send data (congestion and
flow control), and on the other hand, the scheduler has to
ask for which data unit is next to be sent (retransmission
control). To avoid polling of these information, we are using
an event mechanism, where the congestion, flow, and error
control blocks trigger events upon incoming ACK information
or timer events. The send queue scheduler can request ACK
information from these control blocks to piggy-back it with
the data to be sent.

Eventually, we added a new building block that is not found
in regular TCP: a forward error correction (FEC) block. This
block tries to repair lost information in the incoming packet
queue with redundancy information sent with other packets.

This example here is missing a lot of functions found in
TCP, like connection establishment and tear down, and detailed
specifications of the building blocks and PDU formats. Further
description is beyond the scope of this paper.

IV. RELATED WORK

Most of the related work that is relevant in this context
focusses on protocol composition or on network virtualization.
On contrast to this, the presented Node Architecture is a
general architecture for network nodes that enables the usage
of a vast number of different network architectures on top of
physical or virtual networks.

Composition approaches for communication protocols try
to: (1) overcome strict layering and allow for clean cross-layer
interaction, (2) avoid recurring functionality at several layers,
(3) allow reuse of smaller functional units in several protocols,
and (4) simplify the design of protocols. While composition
approaches in the past were mostly looking at dynamic com-
position at run-time with all its complexity, recent research
shifted towards more structured approaches where the solution
space is restrained and part of the decision process is done off-
line, either at design-time or at network configuration time.
Examples for such approaches are F-CSS [7], RNA [5], SILO
[6], and x-Kernel [8]. Another approach (RBA [9]) proposes
a unified protocol header allowing that stored information can
be used by several units of functionality, regardless on their
order of operation or the layer they appear in.

Network virtualization allows to run several (isolated) net-
works in parallel over a single physical substrate [10]–[12]. A
survey of network virtualization can be found in [13].

In parallel to our work, related ideas have been proposed in
the context of Future Internet research [14], [15].

V. CONCLUSION AND FUTURE WORK

In this paper we have presented a Node Architecture for the
Future Internet, which allows for arbitrary, parallel network
architectures on a single node and the smooth transition to-
wards the Future Internet as well as the evolution beyond. We
identified important properties of interfaces needed for such

a Node Architecture and introduced the concept of Netlets as
containers for current and future protocol stacks. Together with
the generic Network Access presented here, we are ready to
support virtualization which we consider will be the general
case in a Future Internet. Current and future work includes the
further refinement and evaluation of our concepts, as well as
the refinement of a design process that eases the development
of a multitude of future networks.

ACKNOWLEDGMENT

Parts of this research were carried out within the 4WARD
project of the 7th EU Framework Programme (FP7) and are
partially funded by the European Commission. We would like
to thank all the partners involved in valuable discussions and
contributions about the concepts presented here. In addition,
the authors would like to thank Peter Baumung and Helge
Backhaus for valuable contributions to this paper.

REFERENCES

[1] L. Völker, D. Martin, I. El Khayat, C. Werle, and M. Zitterbart, “An
Architecture for Concurrent Future Networks”, in 2nd GI/ITG KuVS
Workshop on The Future Internet. Karlsruhe, Germany: GI/ITG
Kommunikation und Verteilte Systeme, Nov. 2008.

[2] V. Jacobson, M. Mosko, D. Smetters, and J. J. Garcia-Luna-Aceves,
“Content-centric networking”, Whitepaper, 2007.

[3] L. Völker, D. Martin, C. Werle, M. Zitterbart, and I. E. Khayat, “Se-
lecting Concurrent Network Architectures at Runtime”, in Proceedings
of the IEEE International Conference on Communications (ICC 2009).
Dresden, Deutschland: IEEE Computer Society, Jun. 2009, (to appear).

[4] J. Day, Patterns in Network Architecture: A Return to Fundamentals.
Prentice Hall International, Jan 2008.

[5] J. D. Touch, Y.-S. Wang, and V. Pingali, “A Recursive Network
Architecture”, ISI, Tech. Rep., Oct 2006, iSI-TR-2006-626.

[6] R. Dutta, G. N. Rouskas, I. Baldine, A. Bragg, and D. Stevenson, “The
SILO Architecture for Services Integration, controL, and Optimization
for the Future Internet”, in Proc. IEEE International Conference on
Communications ICC ’07, G. N. Rouskas, Ed., 2007, pp. 1899–1904.

[7] M. Zitterbart, B. Stiller, and A. Tantawy, “A model for flexible high-
performance communication subsystems”, IEEE Journal on Selected
Areas in Communications, vol. 11, no. 4, pp. 507–518, May 1993.

[8] N. C. Hutchinson and L. L. Peterson, “The x-kernel: An architecture
for implementing network protocols”, IEEE Transactions on Software
Engineering, vol. 17, no. 1, pp. 64–76, 1991.

[9] R. Braden, T. Faber, and M. Handley, “From protocol stack to protocol
heap: role-based architecture”, SIGCOMM Computer Communication
Review, vol. 33, no. 1, pp. 17–22, 2003.

[10] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, “In VINI
veritas: realistic and controlled network experimentation”, in SIGCOMM
’06: Proceedings of the 2006 conference on Applications, technologies,
architectures, and protocols for computer communications. Pisa, Italy:
ACM, 2006, pp. 3–14.

[11] N. Feamster, L. Gao, and J. Rexford, “How to lease the internet in
your spare time”, SIGCOMM Computer Communication Review, vol. 37,
no. 1, pp. 61–64, 2007.

[12] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming the
Internet impasse through virtualization”, Computer, vol. 38, no. 4, pp.
34–41, 2005.

[13] N. M. K. Chowdhury and R. Boutaba, “A Survey of Network Virtu-
alization”, Technical Report, David R. Cheriton School of Computer
Science, University of Waterloo, Waterloo, Ontario, Canada, Tech. Rep.
CS-2008-25, Oct 2008.

[14] A. Keller, T. Hossmann, M. May, G. Bouabene, C. Jelger, and
C. Tschudin, “A System Architecture for Evolving Protocol Stacks”,
in 17th International Conference on Computer Communications and
Networks (ICCCN), Aug 2008.

[15] C. Vogt, “Towards a hostname-oriented network protocol stack for
flexible addressing in a dynamic internet”, Whitepaper, Nov 2008.


