
An Efficient Key Establishment Scheme for
Secure Aggregating Sensor Networks

Erik-Oliver Blaß
University of Karlsruhe

76128 Karlsruhe, Germany
+49 721 608-6416

blass@tm.uka.de

Martina Zitterbart
University of Karlsruhe

76128 Karlsruhe, Germany
+49 721 608-6400
zit@tm.uka.de

ABSTRACT
Key establishment is a fundamental prerequisite for secure com-
munication in wireless sensor networks. A new node joining the
network needs to efficiently and autonomously set up secret keys
with his communication partners without the use of a central in-
frastructure. Most cited current research papers focus on a prob-
abilistic distribution of sets of keys from larger key pools to new
nodes. This results in unnecessary expensive communication and
memory consumption, growing linearly with the size of the net-
work, and guarantees secure connections only with a certain proba-
bility. This work presents a novel approach for efficient and secure
key establishment of nodes joining the network by utilizing the fact
that communication in sensor networks follows a paradigm called
aggregation. Keys are split into shares and forwarded using dis-
joint paths in the network. The approach is self-organizing and
minimizes memory consumption as well as radio transmissions ef-
ficiently – down to logarithmic behavior.

Categories and Subject Descriptors
C.2.0 [Computer Systems Organization]: Computer-Commun-
ication Networks—Security and Protection

General Terms
Security, Algorithms

Keywords
Sensor Networks, Key Establishment, Aggregation, Efficiency

1. INTRODUCTION
With the emergence of sensor networks in more and more situa-

tions of daily life, data security becomes an important aspect of this
new technology. In many scenarios, confidentiality of transported
data can be considered as critical, like data from sensors measur-
ing patients health information, heartbeat or blood pressure details.
Since all data is transported wirelessly between nodes, it is typi-
cally prone to interception and eavesdropping. As a result of cost

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS’06 March 21-24, 2006, Taipei, Taiwan
Copyright 2006 ACM 1-59593-272-0/06/0003 ...$5.00.

or simple feasibility reasons, tiny sensor hardware is not tamper-
proof and therefore an attacker willing to eavesdrop or even modify
essential data might compromise a loyal node for his purposes or
add a malicious node to the network.

Consequently, data transportation starting from a sensor node
towards a data sink has to be protected against such threats. To
protect data, a security relation between communicating nodes has
to be initiated – usually by employing cryptographic keys. How-
ever, one of the crucial problems for security in wireless sensor
networks lies in the distribution and establishment of these keys
between nodes or in particular a new node joining a network and
the nodes it is going to communicate with. Tiny microprocessor-
based hardware of current sensor nodes with scarce memory and
processing power prohibits the use of complex security protocols
known from the PC/LAN world. Although public-key cryptogra-
phy is becoming feasible on these platforms, its frequent use is still
too expensive in terms of computing time and thus energy con-
sumption. Therefore key establishment should generally rely on
symmetric primitives. As wireless sensor networks lack permanent
available infrastructure components, new key establishment proto-
cols or schemes have to be self-organizing and must not rely on
key-distribution centers or any central authorities.

This paper presents a new, efficient key establishment protocol
for sensor networks. It utilizes the fact that nodes in a sensor net-
work do not need to share keys with arbitrary other nodes in the
network but only with those nodes lying on their aggregation tree.
The benefits are:

• Efficient scaling with O(log n), n the number of nodes, be-
havior in terms of memory consumption and radio transmis-
sions. Related publications consume memory and radio en-
ergy with linear O(n) behavior. Our scheme uses only cheap
symmetric encryption.

• Key establishment between a joining node and his partners
in the network is done autonomously without usage of online
infrastructures like key-distribution centers.

• The protocol is able to support dynamic changes of aggrega-
tion and nodes leaving the network.

• In contrast to related work, if no unexpected node failure oc-
curs, this scheme guarantees secure key establishment not
only with a probability p < 1.

• Finally, it operates securely even in the presence of malicious
nodes.

The paper is structured as follows: After an overview about re-
lated work in Section 2, Section 3 describes the implications for

key establishment that come with data aggregation. In Section 4, all
prerequisites and assumptions for the key establishment are consid-
ered, especially a realistic attacker model, and the use of a so called
Master Device is motivated. Section 5 introduces the new protocol,
discusses its security, points out benefits, and finally compares it to
the well-known work by Eschenauer and Gligor [7]. Conclusions
are given in Section 6.

This publication is roughly based on preparatory work, published
in an extended abstract [3].

2. RELATED WORK
Most current publications regarding key distribution or key es-

tablishment in wireless sensor networks assume that there is a re-
quirement for every sensor node to be able to securely communi-
cate with arbitrary other nodes within the network. It will be shown
in Section 3 that this is a very strong and unnecessary assumption,
which is not realistic in real-world sensor scenarios. However, as
a result of the assumption to demand or support pairwise commu-
nication, pairwise symmetric keys between all n nodes within the
network are necessary. Hence, each and every sensor node has to
store about O(n) symmetric communication keys in main memory.

A typical representative for this class of distribution protocols is
presented in [5, 7]. Every sensor node receives a subset of a very
large set of pool-keys from the user. With a certain probability, it
is then possible for two nodes willing to communicate to have at
least one common key in their subset. To achieve a high proba-
bility for the availability of a pairwise key, the pool-size must be
relatively large and grows with O(n). In such a way, however,
a lot of memory is wasted, which is especially critical for low
memory sensor devices with, e.g., only 4KByte RAM. Also se-
cure keying cannot be guaranteed and is only possible with a deter-
mined likelihood. If two nodes do not share a common key within
their subset, O(n) communication steps are required to find a key
path to each other. Along this path, there might still be a compro-
mised node, making key establishment insecure. In a similar way,
ref. [4] uses 2-dimensional key-spaces, reducing memory overhead
to about O(

√
n), but the user has to know the total number of nodes

in advance. This scheme is also not able to cope with nodes leaving
the network.

Other publications focus on the use of a permanently available
base station to distribute keys, e.g., ref. [12]. Online base stations
are often named differently, like mother [15] or rich-uncle [9]. Nev-
ertheless, they have in common that for key establishment between
new nodes a trusted third party is always necessary – an extraordi-
nary node with more computing power or more memory than the
average simple node. However, depending on a base station for as-
sisting in every key exchange is quite unrealistic, as in a real world
sensor network this base station might not be available at all times.

Finally, there is the idea of an attacker being limited in his capa-
bilities: He should not be able to monitor key establishment, e.g.,
during initial sensor deployment [1]. This might be a realistic ap-
proach in certain scenarios in which a fixed number of nodes is
statically deployed and the attacker does not know anything about
the to-be-installed sensor network. However, in a dynamic environ-
ment with new nodes joining or leaving the network from time to
time, this approach is inappropriate.

3. AGGREGATION
Typically, sensors report measured data, e.g., room temperature

or the actual blood pressure, towards a data sink. On the way to the
sink, data can be aggregated by so-called aggregation nodes. These
nodes are able to collect data from other sensor nodes and process

b

a

c d

x

y

z
room 1

room 2
(a) Temperature measurement in two rooms

(b) Aggregation as a tree-like hierarchy

Figure 1: Example data aggregation in a sensor network

it. Aggregation nodes forward the resulting aggregate further to the
sink.

Figure 1(a) shows an example network. Sensor nodes a and b
measure the temperature in room 1 at different positions, e.g., at
the ceiling and the floor, and nodes c and d measure the tempera-
ture in room 2, respectively. Represented as a laptop, the sink is
however only interested in the mean temperature of the complete
building. Therefore, the sensor application or a sophisticated mid-
dleware establishes a tree-like scheme for data transmission. Ag-
gregation node x collects temperature measurements from nodes a
and b and computes their mean value. This is forwarded to aggre-
gation node z. Aggregation node y does the same for nodes c and
d. Finally, node z computes the mean temperature for the whole
building and reports it to the sink. As shown in Figure 1(b), this
communication scheme forms a hierarchy, sensor nodes (vertexes)
and communications paths (edges) form a graph, more precisely a
tree. The question whether communication within this tree is over-
lay communication or not, i.e., if there are multiple hops necessary
to reach x from a, is negligible at this point. From an application
point of view, it is just necessary to have end-to-end secured data
transport between a and x.

Contrary to assumptions made in related work, the major obser-
vation here is that in this typical scenario, sensor nodes do not have
to arbitrarily communicate with every other node. Nodes talk to
each other only by a communication scheme, i.e., within the ag-
gregation tree. Sensor node a for example has to exchange data
only with node x, therefore a needs a shared key with x, aggrega-
tion node y needs a key with node z. Communication is, however,
unlikely to happen between nodes from other categories, like com-
munication between a temperature sensor and a light sensor. Also
communication between nodes within the same category will never
happen. Nodes a and b as well as c or d will most likely never
exchange data among each other. As mentioned above, they might
route or forward data in multi-hop situations, but there is no need
for an applied end-to-end communication.

However, to ensure authenticity and data-origin-proof, it will
also be necessary for, e.g., the sink to verify that certain received
aggregated data has been aggregated in a ”correct” way, set aside

the meaning of correct. As an example, to verify aggregated data
from z with reasonable certainty, the sink will have to talk securely
to x and y. To check whether x aggregated correctly, the sink has to
talk to a and b. It is not in the scope of this work to introduce an ef-
ficient algorithm for an authentic data aggregation, but important to
point out that therefore secure communication has to be established
not only between the vertexes in the aggregation respectively com-
munication graph: Keys are also necessary between a vertex and
its grandfather, great-grandfather etc. tree upwards. Every nodes
needs keys with all other nodes lying on its aggregation path. So,
sensor a needs to have a shared key with x but also different shared
keys with z and the sink to enable possible additional authenticity
verifications or data origin proofs.

4. PREREQUISITE
This section describes an attacker or threat model. We also in-

troduce a Master Device, a mandatory device for user interaction
during a new nodes network join, and motivate its use.

It is further assumed that the general existence of a sink in a
sensor networks is quite differently than the existence of a base
station. Although, in Figure 1 shown as a laptop, the sink may be
the user’s device for interaction with the network, it can still have
similar hardware constraints or availability problems as any other
node within the network. It should and does not take a special role
during key establishment, like a base station.

4.1 Attacker Model
Data transmission in wireless sensor networks is done using a

vulnerable channel: wireless radio. The danger of eavesdropping
wireless communication and modification of confidential data de-
mands encryption (with cryptographic keys). However, keys need
to be established or distributed among communication partners prior
to any communication. It is quite likely that the attacker is present
not only during an applications communication phase, but also dur-
ing key establishment. Because of cost and simple feasibility rea-
sons, the simple sensor nodes hardware is not tamper-proof. Fur-
thermore, as sensor devices are often placed in non-controlled or
public environments, it will be therefore possible for the attacker to
access them and to take over at least one or more regular nodes [14].
By compromising a node, the attacker will learn all its stored se-
crets, their keys, and will control their actions. Security protocols
often assume only one malicious node in the network. However,
it might be possible for the attacker to capture and re-program
k > 1 nodes. In every scenario, the attacker has a certain amount
of money, time, and effort he is able or willing to spend on com-
promising at most k nodes. As all nodes are assumed to be similar
difficult to access and to compromise, his amount does not change
with the total number of nodes available. Consequently, by captur-
ing one or more nodes from the network, the attacker might pretend
to be a legal player to a new node entering the network. By imi-
tating good behavior, all compromised nodes might work together
and take part in an establishment protocol to get to know the new
key to be exchanged. Therewith, the attacker is capable of decrypt-
ing all further communications using this key. The major challenge
for a secure key establishment protocol is to cope with the pres-
ence of compromised nodes, not exactly knowing which nodes are
malicious.

In the following, firstly the presence of exactly one malicious
compromised node is assumed for simplicity and better understand-
ing. However, the key establishment scheme can be extended easily
to k attackers. First, 5.2 describes the scheme with the presence of
only one malicious node, Section 5.4 extends the scheme to cope
with k malicious nodes.

4.2 Use of a Master Device
Assume the situation of a new sensor node, say i, going to join

the network. Node i does not know anything about the network,
because i has just been bought. There must be something like an
initial deployment of trust or a trust anchor to i that will help i to
further establish keys and make it securely join the network. Such
a pairing for the network can never be done autonomously with-
out any user interaction, because otherwise an attacker would also
be able to legally add an arbitrary number of malicious nodes to
the network. Consequently, the user or a special device, the so
called Master Device (MD) representing the user, must establish
the initial pairing. The act of pairing itself, as a preparation for a
new node, can be done using a location limited channel, a secure
channel, e.g., physical contact, between MD and a new node [2].
This allows secure information exchange between MD and the new
node. Examples for appropriate Master Devices are rings or key
fobs like iButtons [6]. See [8] for a discussion on Master Devices.

User or MD interaction with the sensor network is only necessary
during an a priori pairing and the MD does not know anything about
the current network configuration at all time: MD is stateless with
respect to the network topology or configuration. During normal
sensor network operation, MD is offline and can not assist nodes,
so it is not an online server.

It is quite obvious that one has to take special care of an MD’s se-
curity. If an MD is stolen or compromised, an attacker may misuse
it to legally add malicious nodes to the network, give away secrets,
and thereby compromise the whole network. However, it is fair
to assume a tamper-proof, small, and handy MD which is carried
around by the user and taken special care of, e.g., a key fob.

4.3 Notation
This paper uses quite a simple notation: A symmetric key K

shared between node x and node y is called Kx,y . K is symmetric,
that is, Kx,y = Ky,x. Encryption of data using K is denoted
C = EK(data). Decrypting C is not explicitly used here.

5. KEY ESTABLISHMENT SCHEME
The key establishment scheme is defined inductively. Assume

that at a certain point in time, a subtree of an even larger sensor net-
work’s aggregation tree looks like the example in Figure 2. Nodes
e, f and g send their measured values to b, which aggregates them
and sends the resulting aggregate to a and so on. The vertexes
in this graph simply indicate a direct aggregation-relation between
nodes. This implies that secret keys have been established between
adjacent vertices like g and b, but as discussed in Section 3, it is
important to notice that there are also pairwise keys between, e.g.,
g and a – keys between a node and every predecessor on its aggre-
gation tree. The actual network and key configuration at this point
may be seen as an induction hypothesis. At this time, a new node,
say i, wants to enter the network. It will have to talk to aggrega-
tion nodes f, b, a, . . . as seen in Figure 2 and therefore keys must
be established between those nodes and i. Details about how i de-
termines its aggregation path f, b, a, . . . will be given in Section
5.6. For now, it has to be assumed that i simply knows the nodes it
needs to share keys with.

5.1 Pairing of New Nodes
As explained in Section 4.2, i has to be prepared or paired by

MD to properly enter the network. In this protocol, pairing works
as follows: Only MD knows a hard-coded key KMD, which might
have been generated during its fabrication and never leaves the de-
vice. Using KMD, MD is able to compute a pairwise key with
every sensor node at any time. Every node is assumed to have a

a

b d

e f g h

i

c

…

… …

…

Figure 2: Node i joins the network and gets keys for communi-
cation with random nodes e and d.

unique identity ID, like f or g or any other unique identification
ID respectively. MD computes the pairwise key with node ID by
calculating KMD,ID = EKMD(ID). During the initial pairing with
a new joining node ID, MD hands out KMD,ID to ID using a se-
cure location limited channel, e.g., physical contact. MD, however,
does not need to store KMD,ID. MD can be completely stateless.
KMD,ID can easily be re-computed. As a result, every node that
has ever joined the network successfully, possesses a pairwise se-
cret key with MD. From now on, MD is in the position to send
messages to node ID that are encrypted with KMD,ID. Receiving
those messages and decrypting them with KMD,ID, the node knows
that they are originated from MD. This technique allows MD to
hand out tickets to new nodes. Tickets are encrypted specifically
for older nodes already in the network and will help a new node to
introduce itself to the older nodes, as described below.

So, with i going to join the network, MD generates KMD,i and
gives it to i. After that, it randomly chooses two nodes from the ex-
isting network, e.g., e and d. Section 5.5 discusses how two nodes
are randomly chosen by MD without knowing the exact network
configuration. Again, assume for now MD to be in the position of
picking two nodes like e and d randomly. MD computes and hands
out two tickets Te and Td and two keys Ke,i and Kd,i. This is
similar to Kerberos with MD as KDS [11].

In conclusion, i gets from MD using a location limited channel:

• KMD,i, a secret key between i and MD. Node i can thereby
securely communicate with MD in the future.

• Random node IDs e and d as well as secret keys Ke,i and
Kd,i, so i knows whom to talk to during the rest of the pro-
tocol.

• Ticket Te = EKMD,e(i, ”is legal player”, Ke,i) and
Ticket Td = EKMD,d(i, ”is legal player”, Kd,i)

5.2 Splitting and Distributing Keys
In the following, the term key splitting is used. The main idea

is to split a key K perfectly into two key shares K1 and K2 by
choosing a random number r of the same size as K and computing
(⊕ means XOR)

K1 = r,

K2 = K ⊕ r.

Now K1 and K2 may be distributed to different nodes. This tech-
nique allows K = K1 ⊕ K2 to be restored only if K1 as well as

K2 are known to the same node. Knowledge of only one K1 or K2

will not reveal anything about K [13].
Node i generates a symmetric key Ki,f for secret communica-

tion between i and f and splits Ki,f into two shares K1 and K2.
Because i possesses two tickets and keys for the two random nodes
e and d, it uses these nodes to forward both shares towards f . Node
i does the following:

• Node i sends Te and Td to e and d using its normal wireless
communication facilities. As both tickets are encrypted with
the corresponding key between MD and e or d, both nodes
realize that the tickets are originally coming from MD. The
term ”is a legal player” convinces them about i going to be
a legal node in the network. Using keys Ke,i and Kd,i, they
can now also securely communicate with i. Tickets Te and
Td can be discarded.

• Node i sends

C1 = (i, EKe,i(K1, f))

to e. This is a request to forward K1 to f . The preceding
plain node ID i in C1 just helps the receiving node e to un-
derstand that the following ciphertext is coming from i and
can be decrypted with Ke,i.

• Node i requests d to forward K2 to f in the same way. It
sends

C2 = (i, EKd,i(K2, f)).

Nodes e and d now accept i as a legal new node, both have shared
keys with i, and possess i’s key shares for forwarding to f .

Now, secure key forwarding begins. If e already had a pairwise
key with f , say Ke,f , it would simply send

γ1 = (e, EKe,f (i, K1))

to f . However, as shown in Figure 2, there is no key between e
and f . What e now does is to gradually find one of its predecessors
with a secret key to f , simply by asking them. Node e starts asking
its father b whether it has a key with f . If b did not have a key
with f then e would go on and ask a etc. As f is taking part in the
aggregation tree, one of e’s predecessors will have a key with f in
any case. Similar to the technique explained above, these forward
request are secured with the pairwise keys all nodes along a tree-
predecessor path possess: By the induction hypothesis, e.g., e and
b share the key Ke,b or e and a share the key Ke,a and so on. In our
case however, e’s predecessor b already has the common key Kb,f

with f and reports this fact back to e. As e now has knowledge that
b owns a key with f , it is quite clear to e that b’s predecessor a must
also have a common key with f . On the other hand, e knows a,
because a is of course also along the path upwards the aggregation
tree. And because a is a predecessor in e’s aggregation tree, e has
a common key Ke,a with a as well.

Now e does the following:

• e splits K1 into two shares, namely K1
1 and K2

1 .

• It computes

C1
1 = (e, EKe,b(i, f, K1

1))

and

C2
1 = (e, EKe,a(i, f, K2

1)).

• Finally, e sends C1
1 to b and C2

1 to a. This is shown in Figure
3(a).

After decryption, b and a send to f :

b : γ1
1 = (b, EKb,f (i, K1

1))

a : γ2
1 = (a, EKa,f (i, K2

1)).

This is shown in Figure 3(b).
Node d carries out the same operations after receiving C2 and

generating K1
2 and K2

2 . It will ask a and a’s father (not shown in
Figure 3) to forward K1

2 and K2
2 in a similar way to f . Note that

it is no problem, if a has no father but is the root node, that is, the
sink (cf. Section 5.3). Eventually, f receives γ1

1 , γ2
1 , γ1

2 , γ2
2 and

decrypts to K1
1 , K2

1 , K1
2 , K2

2 , see Figure 3(b). Therewith, it can
compute Ki,f by

Ki,f = K1
1 ⊕K2

1 ⊕K1
2 ⊕K2

2 .

If one of e or d already had a key with f , say e, then f would
have received only γ1, γ

1
2 , γ2

2 giving K1, K
1
2 , K2

2 . Yet, f is able to
compute Ki,f by simple XOR:

Ki,f = K1 ⊕K1
2 ⊕K2

2 .

As a result, a secret key Ki,f has been established between nodes
i and f .

a

b d

e f g h

i

c

…

… …

…

21 KKK ⊕=

2
1

1
11 KKK ⊕=

2
2

1
22 KKK ⊕=

2K
1K

2
1K

1
1K

1
2K 2

2K

(a) Distribution of key shares tree upwards

a

b d

e f g h

c

…

… …

…

2
2

1
2

2
1

1
1 KKKKK ⊕⊕⊕=

1
1K

2
1K

2
2K

,1
2K

(b) Node f receiving shares to restore Ki,f

Figure 3: Key split, distribution and receipt. Shares are sent
encrypted, see text.

Using the above scheme, i establishes keys with b, a and all other
predecessors along the aggregation path. It will ask e and d to
forward a newly generated and split key Ki,b to b and so on and so
forth.

5.3 Security Discussion
This section explains the protocols resistance against one com-

promised malicious node for simplicity. As a result, all an attacker

can do is some kind of Denial-of-Service-attack, i.e., denying a suc-
cessful key establishment. He will, however, never be in the posi-
tion to learn a new key, because all data exchange is individually
encrypted.

What makes this protocol secure is the idea to split and distribute
a new key in a way that no single node in the network can fully re-
store it. From a security point of view, it becomes obvious that
therefore the following would be the worst scenario: Both initial
random nodes are residing in the same subtree so that both of them
find the same predecessor having a common key with f . For exam-
ple, let h and c be the random nodes. Both nodes will recognize a
as the predecessor with a key to f . However, even if a is malicious,
it will not get all key shares, because h and c are also securely send-
ing shares to a’s father. The same holds for the situation where a’s
father is malicious. In another scenario with c being malicious,
c might lie on h’s request and might pretend having a key with f .
Yet, h is going to send one key share to a, leaving attacker c with an
incomplete set of key shares. Note: It may be possible that one of
the predecessors during a key establishment is the sink itself. This
is not a problem, because you generally assume to trust the sink.
So if the sink turns out to be one of the predecessor taking part in
an ongoing protocol cycle, there is no need to look for more prede-
cessors – you already found a node which you can trust. Something
similar holds, if the initially chosen nodes reside in different sub-
trees and find different predecessor with keys to f : It is impossible
for one node to gather all the different key shares together.

It is, however, possible for a malicious node to intercept and drop
encrypted key shares, i.e., to refuse forwarding, or to alter a key
share before forwarding it. This will result in an incomplete or
erratic set of key shares arriving at the destination node f . As a
consequence, the destination node will assemble the shares incor-
rectly and compute a new key K′

i,f which is different from Ki,f .
Nodes i and f will thus not be able to communicate securely at all –
ending in a Denial-of-Service attack on the establishment protocol.
Detecting such a Denial-of-Service attack is quite simple: i and f
will not understand each others encrypted data, yet they would not
know which of the nodes taking part in the protocol misbehaved.
In this case only unprotected communication between both nodes
would be possible, as would be without any key establishment pro-
tocol. Wireless sensor networks are prone to Denial-of-Service in
general. If an attacker successfully compromises a legal node in
the network he can launch any type of Denial-of-Service attack.

Looking at Figure 2, you must not consider the vertexes between
nodes as communications paths but only as application-wise aggre-
gation flows, as mentioned above. Communication between, e.g.,
node b and a may be multi-hop communication involving a lot of
other nodes in the whole network, maybe even e or f or whatever.
This is not a security problem, as those multi-hop nodes are only
forwarding end-to-end encrypted data between say b and a. Inter-
mediate nodes will never learn anything from the data they forward.

5.4 Extension to Defend against Multiple Ma-
licious Nodes

So far, the key establishment protocol is secure only in the pres-
ence of one compromised node. However, the user may assume the
presence of up to k malicious nodes in the network. The proposed
protocol can easily be extended to cope with k malicious nodes.
The security goal here would be that even if k nodes may work
together and assemble their key shares, they will never be able to
completely restore the original secret key.

In the presence of k evil nodes, MD has to initially choose k + 1
random nodes, see section 5.5 on how to do this. A new node i
will split its new key into k + 1 shares K1, . . . , Kk+1 distributing

them to the initial nodes. Initial nodes will again split their received
share further into k + 1 new shares K1

1 , K2
1 , . . . , Kk+1

k+1 using the
algorithm above. Each of them has to find k + 1 predecessors with
a shared key to the destination node. As described above, this can
be done gradually: If an initial node x finds a predecessor y claim-
ing to possess a key, x will not only send one share to y but also
different shares to all k predecessors of y.

Consequently, k nodes working together can only assemble k
key shares. Because the secret is split into k + 1 shares and dis-
tributed, there will however always be one non-compromised node
ensuring security for the whole key.

5.5 Finding Multiple Initial Random Nodes
As described above, a new node i going to join the network ini-

tially needs tickets and keys for at least two (or k + 1) random
nodes already residing in the network. Finding these nodes is not
easy for the user or his MD as the current network configuration
is never known, i.e., the user is not aware which nodes are present
in the network. However, there is a quite intuitive solution to this
problem.

During pairing, nodes could get IDs in a sequence, i.e., a new
node entering the network has a higher ID than the node that joined
before. MD or the user would only need to store the total number
of nodes or the ID of the last joining node. The current network
configuration would still remain unknown to MD. If k malicious
nodes are to be expected in the network, k+1 initial random nodes
are required, e.g., two. To pair a new node i with ID IDi entering
the network, MD could determine k + 1 initial nodes by selecting
k + 1 random numbers r1, . . . , rk ∈ {1, . . . , IDi − 1}. The initial
nodes for i would therefore be IDr1 , . . . , IDrk .

For simplicity reasons, key establishment protocols such as [7]
often implicitly assume immortal network hardware, where nodes
will never leave the network they once joined. They are always
reachable and can thereby assist in security protocol steps. In such
an idealistic world, the proposed key establishment scheme would
function perfectly. However, assuming static network configura-
tions is quite unrealistic: In a real world scenario, nodes will ex-
haust their batteries, fail, are vandalized, and so on. Consequently,
randomly choosing IDs could result in IDs of nodes that already
left the network. In such a more dynamic sensor network, all re-
quired k + 1 nodes are present only with a certain probability. If at
least one of the nodes is missing, a secure key establishment is not
possible.

It is therefore a good idea for MD to generally select more than
k + 1 nodes. The probability of randomly selecting at least k + 1
nodes, which are still present in the network, rises by choosing
j > k+1 nodes. Assume a network with a total number of n nodes
that ever joined, i.e., n different nodes have ever been connected to
the network. At the time node i is going to join, m out of these n
nodes have already left, leaving (n − m) nodes still present. The
goal is to find, with a high probability, at least k + 1 alive nodes
by a random selection of j nodes. This is a combinatorial problem
equivalent to the following question: Choosing randomly j ≥ k+1
balls from an urn with n balls, m red and (n − m) green, what is
the likelihood of selecting at least k+1 green balls and (j−k−1)
red balls? This probability P can be computed as:

P =

jX
k′=k+1

`
n−m

k′

´ “
m

j−k′

”
“

n
j

”
P is a function which rises quickly with j as demonstrated in Fig-
ure 4. Three different scenarios are shown with the total number n
of nodes ever joined being 100, 1000, and 10000. Every scenario

 0

 0.2

 0.4

 0.6

 0.8

 1

 202 101 22 11 4 1

P

j

n=100,k=1,m=1
n=100,k=1,m=30

n=1000,k=10,m=10
n=1000,k=10,m=300

n=10000,k=100,m=100
n=10000,k=100,m=3000

Figure 4: Probabilities of finding at least k + 1 nodes alive in
different network configurations

has a more powerful attacker: The number of malicious nodes k
is 1, 10 or 100. For every scenario m depicts the number of nodes
which are non-reachable for a new node i, e.g., because of a wasted
battery or failures. m is shown being 1% or 30% of n to represent a
low and a high number of node failures. Note that the k malicious
nodes are always part of the (n − m) living nodes. In Figure 4,
the y axis represents the probability of finding at least k + 1 living
nodes if m out of n are already dead and MD selects j out of n
nodes randomly. The x axis is scaled logarithmically.

As a result, you can see P reaching high values of more than
99% as soon as j gets close to 2(k + 1). For the three different
scenarios with k = 1, 10 or 100 malicious nodes, 2(k + 1) would
be 4, 22, and 202 accordingly. It is important to notice that 2(k+1)
is an upper bound regardless of n: If the user or MD assumes only
k = 1 malicious node in n = 1000 sensors, the likelihood of
finding 2(k + 1) = 4 living nodes within 1000 is far greater than
finding 4 nodes in n = 100. If k malicious nodes are assumed to
be in the network at a given time and node failure is possible, MD
will select not only k + 1 but 2(k + 1) nodes from the network
randomly. 2(k + 1) is constant and does not depend on the total
number n of sensor nodes. It therefore scales perfectly.

5.6 Finding Key Paths to the Sink
Before a new node i can establish secure keys with all nodes

on its aggregation path IP = {f, b, a, ..}, i has to know for sure
that these are actually future communications partners and i needs
keys for them. i has to know IP. From a security perspective, this
is again delicate: If i simply broadcasts and asks for its path, an
attacker might intercept and provide i with a fake path consisting
only of malicious nodes. This is not a particular problem for a
key establishment protocol and one could argue about this being
application dependent in general. A clever and secure middleware
mechanism might provide i with the aggregation path setup, this
information might be distributed to i by out-of-band mechanisms,
e.g., i could ask a secure distributed service directory for this [8].
Also the user knows that i is a new heartbeat sensor and simply
knows the first aggregation point for heartbeat sensors in the net-
work.

On the other hand, if all nodes on the aggregation path IP for
heartbeat sensors are aware of their actual function, they will know
that a new heartbeat sensor i has to share secret keys with them.
Therefore you could again use the technique of initial random nodes

and secret distribution to learn about f, b, and a. As i has intro-
duced itself to at least e and d, it could ask both of them to look for
the heartbeat-aggregation path IP. e would gradually and securely
ask its predecessors in the tree, i.e., b first, about the aggregation
path for a new heartbeat sensor. Node b would answer with the
path f, b, a and so on. As b already knows the path, a would go on
and further ask k predecessors of b. Only if all received answers do
not differ, e will respond to i with the path IP. If d would do the
same and answer to i with the same aggregation path IP′, i can be
sure even in the presence of k malicious nodes.

5.7 Aggregation Changes
A sensor node like b may fail or die unexpectedly. In this case,

all of b’s keys are lost. This is not a significant problem, because
communication between all predecessors and successors of b will
continue securely, as they have secure keys with each other. All
nodes along b’s aggregation path will even quite likely notice b’s
failure, if b is not responding to encrypted messages. So, node
failure will not impose more problems than node failure without
using the key establishment protocol would do.

On the other hand, nodes may leave the network voluntarily. The
user, application or software component responsible for all aggre-
gation setups may decide a change of a small part or the whole
aggregation tree. Assume node b has to be replaced by node c,
as of Figure 2, and node b and c are aware of the configuration
change. As both nodes do not have a shared secret key with each
other, the idea is again to gradually find k + 1 common prede-
cessors. In the presence of k malicious nodes, b and c can then
securely exchange a key. As described above, b would generate a
random key Kb and split it into k + 1 parts K1

b , . . . , Kk+1
b dis-

tributing them to the predecessors. The predecessors will forward
all key shares securely to c. c itself would do the same with its own
generated key Kc and K1

c , . . . , Kk+1
c . Both nodes will receive all

key shares from their counterpart and compute Kbc = Kb ⊕Kc =
K1

b ⊕ . . .⊕Kk+1
b ⊕K1

c ⊕ . . .⊕Kk+1
c .

5.8 Comparison and Benefits of the Protocol
The performance of this protocol depends on the configuration of

the aggregation tree. Typically, an aggregation tree will not be a de-
generated tree, i.e., nodes will have more than one child. Therefore,
it is fair to assume d, the mean degree of nodes in an aggregation
tree, to be d > 1. The height h of the tree will be h = d logd ne.
Therefore about logd n keys are necessary for a new node entering
the network.

Every aggregation node needs pairwise keys with every node in
its d subtrees. To prevent nodes higher up in the aggregation tree
from storing a lot of keys for all nodes in their subtree, for exam-
ple, the sink would have to store n keys, the following technique
offers further memory savings: similar to MD, each node knows a
unique secret hard-coded key KID, e.g., node b knows Kb. These
hard-coded keys may be generated during nodes’ fabrication time.
Assume node i enters the network and needs to establish a key with
node b, residing higher up in the aggregation tree. As mentioned
before, they establish key Ki,b. However, now both nodes do not
store Ki,b as their pairwise secret key, but use it as temporary key
to establish a permanent Key K′

i,b as follows: the node higher up in
the aggregation tree, in this case b, computes K′

i,b = EKb(i). Us-
ing the already established temporary Ki,b, node b securely sends
EKi,b(K

′
i,b) to i and discards K′

i,b. Node i is able to decrypt K′
i,b

and stores it. From now on, both nodes will use K′
i,b as their pair-

wise secret key. If i wants to communicate with b later on, b can
easily restore K′

i,b by re-computing K′
i,b = EKb(i), just like MD

in Section 5.1. Consequently, this helps to drastically reduce the

amount of required memory. Nodes on the lth-layer of aggrega-
tion need only to store l keys, i.e., l − 1 keys of their predecessors
in the aggregation tree plus their own hard-coded key. For example,
the sink only needs to store 1 key, leaves, i.e., nodes on the lowest
layer of the aggregation tree, need to store at most h = d logd ne
keys.

In conclusion, the total number of keys each node has to store in
its valuable main memory scales with d logd n = O(logd n). This
is far superior compared with the O(n) pairwise keys necessary in
related work.

If k malicious nodes are assumed a priori, the establishment of a
key needs 2(k + 1) initial random nodes. Each random node will
again split its share into k + 1 further shares and find predecessors.
So about 2(k + 1)2 logd n = O(logd n) communications steps are
necessary to securely establish a new key. Again this scales far
better than the O(n) communication steps of related work, espe-
cially [7], which can not even guarantee secure multi-path commu-
nication. The agreement on a shared key is also quite simple in this
paper, as it simply needs the generation of a random number on
k + 1 XOR-operations. In [7] a lot of symmetric encryptions and
decryptions up to the poolsize (can grow to O(n)) are mandatory
per key establishment.

Furthermore, if nodes fail, the probability of finding a path for a
shared key can degrade rapidly – this is not covered at all in [7]. If
2(k + 1) initial random nodes are chosen, this protocol guarantees
a probability of > 99% for a secure key establishment, even in the
case of 30% failed nodes.

Finally, in [7], the user must discover all compromised nodes for
the protocol to function properly and securely, which is very un-
realistic and doubtful to assume. Our protocol can deal with com-
promised nodes knowing all secret keys they are supposed to know
anyway due to normal operation and it even copes with malicious
nodes not revealing themselves to the user.

The proposed scheme utilizes only symmetric cryptography, like
encryption or decryption. This is very time and memory efficient
[10], so the use on a variety of different sensor platforms is possi-
ble.

6. CONCLUSION
This work presents a new efficient key establishment scheme for

wireless sensor networks. Communication flow in sensor networks
typically forms a hierarchical, tree-like aggregation. Within such a
tree, an efficient, memory and radio transmission saving key estab-
lishment is proposed, which scales only with logarithmic behavior
compared to the more expensive linear behavior of related work.

Every node establishes and stores only those keys it would need
because of its task anyhow. Even in the presence of k malicious
nodes, the scheme allows secure and autonomous key exchange
without relying on any online central server or base station. The
user does not need to know the exact network configuration at any
time. Finally, the scheme is able to support dynamic network be-
havior, not only joining nodes, but also node failure, voluntary node
leave, and changes of aggregation.

An efficient establishment of keys however only provides the ba-
sis for a secure and authentic data transport, which is taking aggre-
gation into account. It is an open question, how data origin verifi-
cation and authentication can be protected efficiently in an aggre-
gating sensor network.

7. ACKNOWLEDGMENTS
The authors wish to thank Roland Bless, Artur Hecker, Michael

Conrad, Curt Cramer, and André Huttel for their support.

8. REFERENCES
[1] R. Anderson, H. Chan, and A. Perrig. Key infection – smart

trust for smart dust. In ICNP, 2004.
[2] D. Balfanz, D. Smetters, P. Stewart, and H. Wong. Talking to

strangers: Authentication in ad-hoc wireless networks. In
Symposium on Network and Distributed Systems Security,
2002.

[3] E.-O. Blaß, M. Conrad, and M. Zitterbart. A tree-based
approach for secure key distribution in wireless sensor
networks. In Real World Sensor Networks, June 2005.

[4] H. Chan and A. Perrig. PIKE: Peer intermediaries for key
establishment in sensor networks. In INFOCOM, 2005.

[5] H. Chan, A. Perrig, and D. Song. Random key
predistribution schemes for sensor networks. In IEEE
Security and Privacy Symposium, 2003.

[6] Dallas Semiconductor Corp. The iButton, 2005.
http://www.ibutton.com.

[7] L. Eschenauer and V. Gligor. A key management scheme for
distributed sensor networks. In ACM CCS, 2002.

[8] H.-J. Hof, E.-O. Blaß, T. Fuhrmann, and M. Zitterbart.
Design of a secure distributed service directory for wireless
sensornetworks. In European Workshop on Wireless Sensor
Networks, 2004.

[9] Y. Law, R. Corin, S. Etalle, and P. Hartel. A formally verified
decentralized key management architecture for wireless
sensor networks. In Personal Wireless Communication, 2003.

[10] Y. Law, J. Doumen, and P. Hartel. Benchmarking block
ciphers for wireless sensor network. In IEEE Mobile Ad-hoc
and Sensor Systems, 2004.

[11] S. Miller, B. C. Neuman, J. I. Schiller, and J. Saltzer.
Kerberos authentication and authorization system. Project
Athena Technical Plan, MIT Project Athena, 1998.

[12] A. Perrig, R. Szewczyk, V. Wen, D. E. Culler, and J. D.
Tygar. SPINS: security protocols for sensor netowrks. In
Mobile Computing and Networking, 2001.

[13] G. J. Simmons. An introduction to shared secret and/or
shared control schemes and their application. Contemporary
Cryptology. IEEE Press, 1992.

[14] F. Stajano. Security for Ubiquitous Computing. John Wiley
and Sons, 2002.

[15] F. Stajano and R. Anderson. The resurrecting duckling:
Security issues for ad-hoc wireless networks. In 7th
International Workshop on Security Protocols, 1999.

