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ABSTRACT 
Epidemic algorithms have recently been proposed as an effective 
solution for disseminating information in large-scale peer-to-peer 
(P2P) systems and in mobile ad hoc networks (MANET). In this 
paper, we present a modeling approach for steady-state analysis of 
epidemic dissemination of information in MANET. As major 
contribution, the introduced approach explicitly represents the 
spread of multiple data items, finite buffer capacity at mobile 
devices and a least recently used buffer replacement scheme. 
Using the introduced modeling approach, we analyze seven 
degrees of separation (7DS) as one well-known approach for 
implementing P2P data sharing in a MANET using epidemic 
dissemination of information. A validation of results derived from 
the analytical model against simulation shows excellent 
agreement. Quantitative performance curves derived from the 
analytical model yield several insights for optimizing the system 
design of 7DS. 

Categories and Subject Descriptors 
C.4 [Performance of Systems]: modeling techniques, design 
studies. I.6.5 [Simulation and Modeling] Model Development - 
modeling methodologies. C.2.1 [Computer Communication 
Networks]: Network Architecture and Design - distributed 
networks, wireless communication. 

General Terms 
Algorithms, Design, Experimentation, Performance. 

Keywords 
Performance-oriented design and evaluation studies of distributed 
systems, mobile ad hoc networks, peer-to-peer data sharing, 
analytical performance modeling. 
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1. INTRODUCTION 
Epidemic algorithms have recently been proposed as an effective 
solution for disseminating information in large-scale peer-to-peer 
(P2P) systems and in mobile ad hoc networks (MANET). 
Epidemic algorithms mimic the spread of a contagious disease. 
Like infected individuals pass on a virus to those with whom they 
get into contact, each mobile device in a MANET may relay data 
items to the other devices in its transmission range. Basically, 
every node of the MANET buffers messages it receives up to a 
certain buffer capacity and may forward such messages a limited 
number of times. A mobile device forwards a message to some 
deterministically determined other devices or to a randomly 
selected set of other devices of limited size. Important parameter 
of an epidemic algorithm constitute the number of devices to 
which the message is forwarded denoted as the fan-out of the 
dissemination, the number of times a message is forwarded, and 
the buffer size and management scheme at mobile nodes. 

Infostations have been introduced as a communication model in 
which mobile users can connect to the network in the vicinity of 
their access points [7]. Infostations trade connectivity for 
capacity. Furthermore, Grossglauser and Tse demonstrated a 
capacity/mobility trade-off by showing that the average 
throughput per source-destination pair of nodes can be kept 
constant for increasing the density of nodes in a multihop wireless 
network with mobile devices [8]. Moreover, they presented a 
formal proof and simulation results showing that mobility 
increases the per-session throughput in a MANET for delay-
insensitive applications. This observation exploits epidemic 
dissemination of information in MANET and has triggered a 
number of novel algorithms for MANET; e.g., for routing [9] and 
P2P data sharing [13], [14]. 

Mathematical models for the spread of epidemic diseases have 
been widely studied (see e.g., [1]). Typically, such models 
consider the spread of one disease (i.e., one data item). Such 
models analyze the transient behavior for determining the fraction 
of infected individuals (i.e., mobile nodes) among a finite 
population (i.e., the number of nodes of a MANET) at some time 
and the probability with which the entire population is infected 
after a given time (i.e., all nodes have received the data item) [6]. 
However, comprehensive modeling of epidemic information 
dissemination among nodes of a MANET (e.g., for implementing 
P2P data sharing) requires considering the long run behavior for 
system with large number of data items as well as finite buffer size 
with a buffer management scheme like least recently used (LRU).  

In this paper, we present an analytical modeling approach for 
epidemic information dissemination (EID) systems in MANET. 
As major contribution, the introduced approach explicitly 
represents the spread of multiple data items, finite buffer capacity 
at mobile devices and an LRU buffer replacement scheme. The 

 
© ACM, 2005. This is the author's version of the work. It 
is posted here by permission of ACM for your personal 
use. Not for redistribution. The definitive version was 
published in Proceedings of  SIGMETRICS 2005 
http://doi.acm.org/10.1145/nnnnnn.nnnnnn" 



introduced modeling approach extends the approach of Dan and 
Towsley [5] for modeling LRU buffer management. A major 
difference between [5] and our modeling approach lies in that due 
to intermittent connectivity of a MANET, we have to distinguish 
between the local buffer and the buffers of other remote devices. 

Papadopouli and Schulzrinne introduced seven degrees of 
separation (7DS), a system for P2P Web document sharing 
between mobile users based on epidemic information 
dissemination [13]. Using the introduced modeling approach, we 
analyze the performance of four variants of 7DS. In particular, we 
perform a comparative evaluation of systems comprising of 
mobile devices running 7DS with and without power conservation 
as well as with and without support of fixed infostations. A 
validation of results derived from the analytical models against 
simulation results shows excellent agreement. In fact, the 
analytical results almost always lie in the 99% confidence interval 
of the corresponding simulation results. 

The performance study for 7DS shows that neither the 
transmission range nor the selected variant of 7DS has a 
significant impact on the fraction of dataholders in the long run. 
However, for high transmission ranges the selected variant of 7DS 
has a significant impact on the hit rate. Depending on the 7DS 
variant and the buffer size, hit rates between 0.48 and 0.92 can be 
achieved. Furthermore, a reduced transmission range of 115 m 
yields higher hit rates than using aggressive power conservation at 
230 m transmission range.  

The remainder of this paper is organized as follows. Section 2 
summarizes related work on modeling and performance 
evaluation of epidemic information dissemination in MANET. 
Section 3 recalls the main features of the 7DS system and the 
modeling approach for LRU buffers. The novel analytical 
modeling approach for epidemic dissemination of information and 
an analytical performance model for 7DS are introduced in 
Section 4. In Section 5, we present a comprehensive performance 
study of 7DS using the analytical model. Finally, concluding 
remarks are given. 

2. RELATED WORK 
Several recent papers introduced design proposals for P2P data 
sharing in MANET using epidemic dissemination of information 
and presented performance models and simulation studies of their 
design. Papadopouli and Schulzrinne [13] introduced 7DS and 
presented performance results. They proposed several design 
variants for 7DS. In particular, 7DS systems with and without 
power conservation as well as with and without infostations 
(denoted as P, NP, FIS-P, and FIS-NP) have been introduced. 
Using simulation they evaluated these design variants by 
considering the percentage of dataholders and the delay for 
receiving a data item in a finite time horizon. They represent the 
popularity of this data item by varying the number of mobile 
devices, which are querying this item. They also presented a 
simple analytical model based on a diffusion-controlled process 
for analyzing the transient behavior of a hybrid scenario 
consisting of mobile devices and a fixed infostation. Both their 
simulation study and the analytical model assumed unlimited 
buffers, an unlimited number of query repetitions until a data item 
is received and just considered the spread of a single data item. 

We first extend the design of 7DS by introducing limited LRU 
buffers at mobile devices and by limiting the number of re-queries 
for a data item, since we feel that these features are essential for 
P2P data sharing in MANET. In contrast to [13], our performance 
study considers the long-run performance of 7DS with these 

extensions rather than the transient phase and is entirely based on 
an analytical model. Our analytical model is applied for a 
comparative evaluation of the long-run performance of four 7DS 
variants.  

Small and Haas [14] proposed an epidemic algorithm for 
collecting information in a hybrid network consisting of mobile 
nodes (i.e., whales) and fixed infostations (i.e., buoys) [14]. Their 
architecture, denoted as shared wireless infostation model 
(SWIM), actively transfers information among wireless nodes on 
each contact, until information is unloaded to one of the 
infostations. According to [14], SWIM is a marriage of the 
infostation concept [7] with the ad hoc networking model. They 
assume unlimited buffers and just consider the spread of a single 
data item. For the analysis of SWIM, they used Markov models 
for which two input parameters must be determined off-line by 
simulation depending on the mobility model. By transient analysis 
of the Markov chain, they determine the time that a data item is 
present in the system as well as the probability that a data item can 
be uploaded to an infostation. As for [13], the main difference of 
their work to ours lies in that we take into account multiple data 
items and limited LRU buffers, and do not rely on off-line 
simulation for determining model parameters. Furthermore, our 
approach allows the derivation of an approximate analytical 
system model for SWIM with LRU buffers for analyzing its long-
run performance behavior by appropriately tailoring the equations 
as presented for 7DS.  

Dan and Towsley presented an approximate analytical model of 
the LRU and FIFO replacement schemes of a stand-alone cache 
under the independent reference model [5]. Building upon this 
work, Dan, Dias, and Yu [4] analyzed the effects of skewed data 
access on the buffer hit ratio in a distributed data sharing 
environment connected by a wired network. In particular, they 
observed two properties recalled in Section 3: the conservation of 
flow and the relative push down rate. Our analysis of P2P data 
sharing in a MANET based on epidemic data dissemination builds 
upon their work. We show that the conservation of flow property 
still holds such mobile data sharing environments and derive the 
corresponding equation. Furthermore, we observe that the relative 
push down rate is given by the same equation as in [4]. 

3. BACKGROUND 
3.1 Description of 7DS with Finite Buffers 
and Limited Query Repetition 
The 7DS system [13] has been designed to enable Web browsing 
on mobile devices with a non-persistent Internet connection. 
When an Internet connection is not available for a mobile device, 
Web pages can be retrieved from other mobile devices or an 
infostation within the spatial proximity. 7DS is designed for 
devices with IEEE 802.11 wireless network interfaces and a 
memory capacity typical for today’s laptops or personal digital 
assistants (PDAs).  

To keep the paper self-contained, we recall the basic features of 
7DS. Each mobile device running 7DS maintains a local buffer, 
i.e., a directory on the local disk, for storing Web pages. To query 
the buffer of remote devices, 7DS uses query and report message. 
A mobile device that searches for a Web page sends a query 
message. The message contains the URL of the Web page and the 
address of the inquiring device. A query message is sent to all 
devices in the transmission range, using single hop multicast in 
the IEEE 802.11 ad hoc mode. When a mobile device or an 
infostation receives a query message, it searches its buffer for a 



Web page with the given URL. On a hit, it returns a report 
message to the inquiring mobile device. The inquiring device 
selects the most appropriate download source from all report 
messages and, subsequently, transfers the Web page using a direct 
HTTP connection. Subsequently, this Web page is available to 
other mobile devices within the former device’s radio coverage 
implementing epidemic information dissemination.  

Besides this P2P data sharing among mobile clients, the 7DS 
system allows mobile devices to switch between ON and OFF 
periods for power conservation. Furthermore, among other 
additional features [13] outlines how 7DS can support server-
client (S-C) data delivery using fixed or mobile infostations as 
well as hybrid forms comprising of P2P data sharing among 
mobile clients and additional S-C data delivery by fixed or mobile 
infostations. 

The design of 7DS presented in [13] assumes an unlimited buffer 
and leaves it to the user to remove Web pages that are out-of-date 
or no longer of interest from the buffer in order to free disk space. 
However, for mobile devices like PDAs or even Smart Phones, 
buffer capacity is scarce. Thus, we model and analyze EID 
systems with a finite buffer of size B and the least recently used 
(LRU) replacement scheme that manages the buffer as a stack. 
Upon access to an item in the buffer that is located at stack 
position j, the item is placed at the top of the stack, and all items 
on positions 1,…,j-1 are pushed down by one position. If an item 
that is not found in the buffer is inserted into the stack, it is 
inserted at the stack top, and all items are pushed down by one 
position, where the item on position B (i.e., the least recently used 
item) is removed from the buffer. A straightforward way to 
incorporate limited buffers in 7DS lies in updating the LRU stack 
on each access to the local buffer, i.e., on either a local or remote 
query. The least recently used Web page is replaced, if on a local 
request a Web page is retrieved from a remote node and buffer 
capacity is exceeded. 

Furthermore, the design of 7DS according to [13] considers no 
limit on the number of query repetitions for a desired data item; 
i.e., queries are sent periodically until the data item is retrieved 
from another mobile device or an infostation. For the practical 
deployment of a 7DS system, the number of repetitions should be 
limited. Furthermore, assuming movements of pedestrians, 
increasing the time between repetitions will improve the 
likelihood of a success. Thus, we consider 7DS extended by a 
limited number of repetitions and a binary exponential back-off. 

3.2 Modeling LRU Buffer Management 
Obviously, the hit rate of the buffers is the key quantity for the 
long-term performance behavior of an EID system like 7DS. 
Thus, performance modeling of EID systems requires the 
derivation of LRU buffer hit rate in steady-state. To keep the 
paper self-contained, we recall a computationally efficient 
approximate approach for determining the steady state buffer hit 
rate for LRU buffers introduced by Dan and Towsley [5]. The 
approach cannot only be employed for stand-alone caches, but has 
also been applied for distributed data-sharing environments in 
wired networks [4]. 

Consider an application, which retrieves data items that are 
identified by keys. The application defines a set of distinct data 
items D with cardinality |D|=D, and a set K of distinct keys with 
cardinality |K|=K. For ease of exposition, we identify the keys 
with the numbers, i.e., K={1,2,…,K}. Each key k∈ K matches a 
fraction β(k) of the data items, where each item is matched by 
exactly one key. Thus, the set D can be divided into K partitions 

D(k), each with size β(k)D where 1 ≤ k ≤ K and 
1

( ) 1
K
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kβ

=
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Each key k has access probability α(k) where 1 ≤ k ≤ K and 
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( ) 1

K

k
kα

=
=∑ . Queries are issued according to a Poisson process 

with rate λ and follow the independent reference model. That is, 
for a query qi holds P{qi = k}= α(k), regardless of the history of 
previous queries. The independent reference model is commonly 
used for studying buffer behavior.  

As key concept, the approach of Dan and Towsley approximately 
determines the expected number of items of partition D(k) in the 
top j positions of the LRU stack, denoted by b(k,j). When a query 
is issued for key k, the hit probability in the top j stack positions is 
given by ( , ) ( )b k j k Dβ . Let r(k,j) denote the rate for pushing 
down items of partition D(k) from stack position j to stack 
position j+1 where 1 ≤ k ≤ K and 1 ≤ j ≤ B. [5] argues that under 
steady-state-conditions the long-term rate for pushing down an 
item from position j to stack position j+1 is equal to the rate for 
inserting the item into the top j stack positions. Thus, with the 
assumption that on a miss an item can always be brought into the 
buffer, the rate r(k,j) is equal to the miss rate for key k in the top j 
stack positions. This miss rate is given by the product of the query 
issue rate, the access probability for key k, and the miss 
probability for key k. Thus, we have: 
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This observation is denoted as conservation of flow in [4]. Let 
p(k,j) denote the probability that an item of partition D(k) is 
located at position j in the LRU stack where  
1 ≤ k ≤ K and 1 ≤ j ≤ B. As shown in [5], the probability p(k,j) can 
be derived by exploiting the fact that if an item is pushed down 
from stack position j in the LRU scheme, then it moves to position 
j+1. Subsequently, the probability p(k,j) is given by the 
probability for pushing down an item from position j-1 to position 
j under the condition that the current query triggers such a buffer 
movement from position j-1 to j in the LRU stack. The probability 
p(k,j) can be approximated closely by the ratio between the rate 
for a buffer movement of an item of D(k) from position j-1 to j 
and the rate for such a buffer movement of any item of D. Thus, 
using (1) we have: 
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This observation is denoted as relative push down rate in [4]. 
Note that the probability p(k,j) is independent of the query issue 
rate. Subsequently, for each partition D(k), the expected number 
of items of D(k) in the top j positions, b(k,j), can be determined by 
the summation of the probabilities for finding an item of D(k) at a 
position less or equal to j in the buffer. Thus, we have: 

 
1

( , ) ( , )
j

n

b k j p k n
=

=∑ , k=1,…,K, j= 1,…,B (3) 

Combining (2) and (3) together with b(k,1) = α(k) for 1 ≤ k ≤ K 
leads to an iterative scheme for the approximate computation of 
b(k,j) for k=1,…,K, and j=2,…,B. This iterative scheme has the 
computational complexity O(KB). As noted in [5], due to the 
approximative computation, values of some b(k,j) may exceed 
β(k)D for some k and j. In this case, all r(k,n) are set to 0 for  
j < n ≤ B. That means, it is assumed that all items of partition k are 



located in the top j locations of the buffer and are never pushed 
down beyond position j. Having computed the quantities b(k,B) 
using (3), the hit rate of an LRU buffer is given by: 
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In the next section, we show how to generalize (1) to (4) to EID 
systems on a MANET with finite LRU buffers. 

4. THE ANALYTICAL MODELING 
APPROACH  

4.1 General Approach for Modeling Epidemic 
Information Dissemination 
We assume a MANET with N mobile devices. Each device has a 
transmission range R. We assume that a transmission between two 
devices is successful, if and only if for the distance d between the 
devices holds d ≤ R. We assume that the MANET is deployed in a 
square area A. These N devices are initially distributed within A 
according to a uniform distribution. To incorporate device 
mobility, which is essential for EID, we make two: (i) the mobile 
devices have a steady-state spatial distribution that is equal to a 
uniform distribution within the area and (ii) the set of mobile 
devices in the vicinity of a device changes substantially between 
two successive queries, i.e., the nodes that receive a query are 
independently chosen from a uniform distribution for each query. 
On the first view, these assumptions seem to be very restrictive 
towards the mobility model, since most mobility models to not 
exhibit these properties. However, we will show in Section 5 that 
the analytical model closely matches simulation results, even if 
the mobility model employed in the simulation model violates 
these assumptions. 

To incorporate a generic model for the EID system consistent with 
the approach presented in Section 3.2, we assume that the EID 
systems distributes D distinct data items that are matched by K 
distinct keys k ∈  K. Each item d is initially stored by exactly one 
of the N mobile devices denoted as the origin device of item d. 
The selection of the devices storing d is performed according to a 
uniform distribution. A data item is available from its origin 
device at all time, even if it is not stored in the buffer of any other 
device.  

Each device issues queries according to a Poisson process with 
rate λ. We refer to a device that issues a query qi as the inquiring 
device for query qi. The key k in the query is selected with 
probability α(k) according to the independent reference model, for 
1 ≤ k ≤ K. Besides querying the local buffer, the inquiring device 
sends the query to a set of other devices. Throughout this paper, 

we assume that the wireless transmission range R solely 
determines this set of other devices. A device that receives the 
query will generate response messages, if it is either the origin 
device of a data item matching qi, or stores matching data items in 
its buffer. After retrieving an item from a remote device, the 
inquiring device inserts the item into its buffer. 

We consider a finite buffer of size B with LRU replacement for 
storing data items at each mobile device. We assume that data 
items do not change or expire and that their popularity 
distribution remains constant over time. It is easy to see that the 
system can be modeled by a Markov chain with a number of states 
that grows exponentially with N, B, and K. The states are given by 
the content of all buffers, where the state of each buffer is a 
permutation of a subset of K. The state transition probabilities are 
determined by the content of the buffers in the current state, the 
access probabilities α(k), 1 ≤ k ≤ K, and the probability that a 
mobile device with an item from partition D(k) in the buffer is in 
vicinity. We omit a formal proof of convergence, but state that it 
is easy to show that the Markov chain is finite, irreducible and 
aperiodic. Thus, it has a limiting state probability, which is 
approximated by our modeling approach. 

Recall that the conservation of flow property used in (1) assumes 
that on a miss an item is always inserted into the buffer. This 
assumption does not hold for data sharing in a MANET. In a 
MANET, on a miss an item can only be inserted into the buffer 
with some probability depending on: 

(i) the probability that the item can be retrieved from the 
(remote) origin device and 

(ii) the probability that the item can be retrieved from the buffer 
of any other remote device. 

Subsequently, we show how to extend (3) for P2P data sharing on 
mobile devices with LRU buffers using EID. We assume that all 
buffers are stochastically identical, i.e., the expected number of 
data items of partition Dk found in any buffer is given by b(k,B). 
We note that the number of data items of partition D(k) in the top 
j positions depends on both the number of data items of all 
partitions in the top j-1 positions of the local buffer, b(k,j-1), and 
on the number of items in remote buffers at any position, b(k,B). 
Analogous to (3), we can write:  

 
(

)
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( , 1), (1, ), (2, ), , ( , ) ,

kb k j f b j b j

b K j b B b B b K B
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−

…

…
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  for 1 ≤ k ≤ K, 1≤ j ≤ B, 

In (5) in general the fk are non-linear functions in b(k,j) which 
opposed to (3) cannot be solved by simple back-substitution. In 

Table 1. Definitions of key measures for modeling the 7DS system. 
Expression Meaning

Probability for a hit for key k  in the top j  positions of the local buffer.

Conditional probability for a hit for key k in the bottom B -j positions of the local buffer given that
no hit for key k  occurs in the top j  positions.

Probability for retrieving an item matching key k  from the origin device.

Probability for retrieving an item matching key k  from a remote device other than the origin device.

Rate for pushing down items of partition D(k) from stack position j to j +1 due to query responses
from the local buffer.

Rate for pushing down items of partition D(k) from stack position j to j +1 due to query responses
from remote buffer.

( , )localp k j

( , )localp k B j j−

( )originp k

( )remotep k

( , )localr k j

( , )remoter k j

 



the following, we propose an effective iterative scheme for the 
approximate computation of b(k,B), 1 ≤ k ≤ K. For ease of 
exposition, we define b(k,0)= 0. We start with the initial 
assignment of the remote buffers: 

 (0) ( , )
B

b k B
K

= , 1 ≤ k ≤ K. (6) 

Then, we iteratively compute 
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   for i = 1,2,… and j = 1,…,B 

until the termination condition 

 ( ) ( 1)( , ) ( , )i ib k B b k B ε−− <  (8) 

is satisfied for 1 ≤ k ≤ K.  

Note that customizing the iterative scheme to a particular EID 
system requires derivation of fk. To prove the convergence of the 
iterative scheme, note that (7) describes a simple fix point 
iteration. We can easily use the fk to construct a function  
F:Rd → Rd with d = (B+1)K. The function operates on a vector  
b ∈  Rd with b(jK+k) = b(k,j). Following the contraction mapping 
principle, the iteration b(i+1)=F(b(i)) for i= 1,2,… converges, if 
holds: 

 ( ) ( *) *F F c
∞ ∞

− ≤ −b b b b  (9) 

for some constant c with 0 < c < 1. The convergence of (9) must 
be shown for each F given by the functions fk for a particular EID 
system. 

4.2 Conservation of Flow for 7DS 
For customizing the approach presented in Section 4.1 to the 7DS 
system, we have to derive an expression for the push down rate of 
a data item of partition D(k) from position j to position j+1 in the 
LRU stacks of 7DS. Using the conversation of flow observation, 
this is equal to finding an expression for the rate of inserting an 
item of partition D(k) into the top j positions. In 7DS, an item can 
be inserted into the top j positions of the buffer either on a local or 
a remote request. That is: 

(i) on a local request, the item is not already located in the top j 
positions and it is either located in the bottom B-j positions 
of the local buffer or it can be retrieved from the origin 
device or from any other remote device. 

(ii) on a remote request, the item is not already located in the top 
j positions of the local buffer, but is located in the bottom B-j 
positions. 

To derive an expression for the relative push down rate for 7DS, 
we introduce additional measures in Table 1 for 1 ≤ k ≤ K and  
1 ≤ j ≤ B. Subsequently, we split the push down rate r(k,j) into 
two rates ( , )localr k j  and ( , )remoter k j  and derive these rates as 
follows: 

(i) Local request: Using the notation introduced in Table 1 to 
derive the rate for pushing down an item on a local request, 
we have:  
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Since all devices issue queries according to a Poisson 
process with identical rate λ, the probability that a request is 
a local request is 1/N.  

(ii) Remote request: For the rate for pushing down an item k on a 
remote request, we have:  

 ( )( , ) ( ) 1 ( , ) ( , )remote local localr k j k p k j p k B j jα λ= − − . (11) 

Under the assumption that a device sends a query message 
even if it stores a matching item in the local buffer, 
analogous to case (i) the probability for a remote request is 
(N-1)/N.  

By weighting ( , )localr k j  and ( , )remoter k j  with their probability of 
occurrence, the overall push down rate for an item of partition 
D(k) is given for 1 ≤ k ≤ K and 1 ≤ j ≤ B by: 
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Note that (12) constitutes the conservation of flow for the 7DS 
system with LRU buffers operating in a MANET analogous to (1) 
for standalone LRU caches. Subsequently, we will show how to 
derive the individual terms of (12). Similar to [5], the probability 
for a hit in the top j positions of the local LRU buffer is given by: 
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For computing the probability for a hit in the bottom B-j 
positions, recall that in (10) and (11) this probability is used under 
the condition that no hit has occurred in the top j stack positions. 
Thus, we derive the conditional probability as: 
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Neglecting border effects in the simulation area, the probability 
for a successful transmission to a particular device can be 
determined by the ratio between the area covered by the wireless 
transmission range of a device (i.e., πR2) and the total considered 
area A. Since the origin device of key k is with probability 1/N 
equal to the local device and with probability (N-1)/N an arbitrary 
remote device, the probability for retrieving an item from the 
origin device is given by: 
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The computation of the probability for receiving an item from a 
remote buffer can be broken down to the probability that exactly n 
remote devices receive the query from the inquiring device and at 
least one of them stores a matching piece of information in its 
local buffer: 
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Putting (13) to (16) into (12) completely specifies the overall push 
down rate for an item of partition D(k). Subsequently, following 
(2) we derive the probabilities: 
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Equation (17) constitutes the relative push down rate for the 7DS 
system with LRU buffers operating in a MANET analogous to (2) 
for standalone LRU caches. Note that as in (2) the rate λ of the 
query arrival process cancels out in (17). Subsequently, the b(k,j), 
can be determined by summation of the probabilities p(k,j) 
according to in (3). 

Finally, the overall hit rate HR7DS of the 7DS system can be 
determined using the probabilities that upon a query for key k the 
items matching k can be retrieved either from the local buffer, the 
origin device, or the buffer of a remote device. That is: 
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Each iteration of the iterative scheme (7) requires the computation 
of b(k,j) for k = 1,…,K and j=1,…,B. Furthermore, each iteration 
of (7) requires one evaluation of (16) with N-1 summations for  
k = 1,…,K,. Thus, the complexity of each iteration of the scheme 
is O(KN + KB). Assuming that the number of iterations of (7) 
until reaching the termination condition (8) is bounded by some 
constant, the iterative scheme for calculating the hit rate of the 
local buffer has an overall complexity of O(KN + KB). The 
subsequent computation of the overall hit rate of the EID system 
using (18) has the additional complexity O(KN). Putting it 
altogether, the overall computational complexity of the iterative 
scheme is O(KN + KB). We omit a formal prove of the 
convergence following (9) and refer to Section 5 for an 
experimental validation. For all 7DS system models analyzed in 
Section 5, the corresponding scheme converges in less than 40 
iterations.  

4.3 System Models for the 7DS Variants 
In this section, we will show how to extend the basic model 
presented in Section 4.2 to represent the different variants of 7DS 
introduced in [13]. As first extension of the model, we include 
server-client (S-C) scenarios using fixed and mobile infostations. 
For a 7DS variant with fixed infostations (FIS), we assume that 
the data is not provided by the mobile device, but by NFIS fixed 
infostations that are placed within the area A with an optimal 
spatial distribution. That is, the area covered by the infostations 
does not overlap. Note that retrieving a data item from an 
infostation requires bi-directional communication to exchange 
query and response messages. Subsequently, the infostations have 
an effective transmission range that is equal to the transmission 
range of the mobile devices, R, even if it possible to operate 
infostations with much higher transmission ranges in practical 
applications due to a much better power supply. Assuming an 
optimal spatial distribution, each infostation linearly increases the 

probability for retrieving an item from the origin device. Thus, 
(15) changes to: 
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The assumption of optimal spatial distribution does not hold for 
mobile infostations (MIS). Therefore, with NMIS mobile 
infostations a data item can be retrieved if any of the mobile 
infostations is reachable, where the radio coverage of the mobile 
infostations may overlap. In this case, (15) changes to: 
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 (20) 

Consistent with [13], we will use NFIS = NMIS = 1 in our 
performance studies. Note that in this case (19) is equal to (20). 

When using 7DS in a P2P variant instead of a S-C variant, the 
mobile devices must supply data items. For example, in a mobile 
Web browsing application, a mobile device may download Web 
pages using a fixed network connection before joining the 7DS 
system. Subsequently, the mobile device will supply the Web 
pages to other devices. In such scenario, it is not realistic to 
assume that each data item is stored by exactly one mobile device. 
We will rather assume that the number of origin devices for a data 
items from partition D(k) reflects the popularity of the items α(k), 
1 ≤ k ≤ K. Thus, (15) changes to include the increased quantities, 
while ensuring that each data item is available from at least one 
mobile device by taking the ceiling for values smaller than 1: 
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Beside the S-C and P2P variants without power conservation 
denoted as FIS-NP and NP, respectively, [13] considers 7DS 
variants that use power conservation. These variants are denoted 
as FIS-P and P, respectively. With power conservation, the mobile 
devices divide the operation cycle in ON periods of duration PON 
and OFF periods of duration POFF. During an OFF period, the 
mobile device switches off the wireless communication interface 
and does not respond to any queries. Since the ON and OFF 
periods are not synchronized among the mobile devices, the 
probability for contacting a mobile device in an ON period is PON 
/ (PON + POFF). To model power conservation in P2P mode, (16) 
and (20) can easily be extended: 
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As last feature, [13] considers periodical query repetition in the 
case that a data item is not retrieved. Note that this feature is 



essential for the performance analysis of the transient behavior of 
a 7DS system with a single data item, since without query 
repetition no node will be interested in the item after some time 
and dissemination will stop. In realistic applications, a limited 
number of NRT repetitions with an exponential back-off time is 
obviously preferable than unlimited query repetitions. For ease of 
exposition, we count the initial query as first repetition. It is easy 
to see that the number of repetitions changes the probability for an 
access to a key k, α(k). This is because a query for key k of 
partition D(k) is likely to be repeated, if the probability for a miss 
in partition D(k) is high. The probability for a hit p1(k) in the first 
repetition of a query for an item from partition D(k) is given by 
the probability that an item can be either retrieved from the local 
buffer, the origin or a remote buffer, i.e.,  

 ( )( )( )1( ) 1 1 ( , ) 1 ( ) 1 ( )local origin remotep k p k B p k p k= − − − −  (24) 

In contrast, the item will not be in the local buffer on successive 
repetitions. Thus, the probability for a hit p2(k) is given by: 

 ( )( )2 ( ) 1 1 ( ) 1 ( )origin remotep k p k p k= − − −  (25) 

Thus, the expected number of repetitions of a query for an item of 
partition D(k) is given by: 
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The effective access probability ˆ( )kα to partition D(k) with NRT 
queries can be determined by: 
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To model the 7DS variants considered in [13], we use (21) to 
model a P2P scenario without power conservation (NP) as well as 
(23) and (22) to model a P2P scenario with power conservation 
(P). For the S-C scenarios, we use (19) to model a scenario 
without power conservation (FIS-NP) as well as (19) and (22) to 
model a scenario with power conservation (FIS-P). Note that [13] 
considers passive querying in S-C scenarios, i.e., a mobile device 
only sends queries when it receives an advertisement from an 
infostation. Thus, hit ratio is always equal to 1. We will rather 
consider the no-trivial case of using infostations together with 
active queries. To avoid confusion, we will denote the resulting 
scenarios as FIS-NP* and FIS-P*, respectively. The impact of 
query repetition is only analyzed for the NP variant by using (21) 
and (27). 

5. PERFORMANCE ANALYSIS OF 7DS 
WITH LIMITED BUFFERS 
5.1 Modeling Assumptions 
[13] presents a study of the transient behavior of 7DS considering 
the spread of a single data item among mobile devices with 
unlimited buffers. In the performance study presented in this 
section, we use assumptions identical to [13] as far as possible. 
However, to evaluate the long-term performance of 7DS with 
limited buffers and LRU replacement, we have to extend the 
system model used in [13]. Consistent with [13], we assume that 

N mobile devices move in a square area of 1000 m × 1000 m. All 
mobile devices have an identical transmission range R. Similar to 
[13], we consider three different transmission power levels in 
many experiments, i.e., 281.8 mW, 17.6 mW, and 1.1 mW. Using 
the radio model assumed in [13], these transmission powers result 
in a high transmission range of R = 230m, a medium transmission 
range of R = 115m, and a low transmission range of R = 57.5m, 
respectively.  

In contrast to [13], we assume that K = 1000 popular data items 
are distributed in the buffers of the mobile devices. Since keys in 
7DS constitute URLs that identify data items given by Web 
documents, we have a one-to-one matching between keys and data 
items. That is, β(k)=1 and |D(k)|= 1 for 1 ≤ k ≤ K. [13] uses 
numbers of mobile devices N ∈  {5,10,…,25} to represent 
different levels of popularity for the single data item considered in 
each experiment. We assume a fixed number of mobile devices, N 
= 64 and represent the popularity of the data items by setting the 
access probabilities α(k) ≅  k-γ for 1 ≤ k ≤ K. This is, the access 
probabilities follow a Zipf-like distribution. [3] analyzes the 
object popularity distribution in a mobile Web browsing 
application and reports a Zipf-like distribution with values of γ  
between 0.85 and 1. Thus, we will use  γ = 0.9 in most of our 
experiments. [3] also reports that mobile devices repeat a 
significant fraction of requests. Thus, the independent reference 
model constitutes a realistic assumption for a mobile Web 
browsing application.  

In many experiments, we will consider two different buffer sizes  
B = 64 and B = 256. In a typical 7DS application, data items 
constitute Web objects. Assuming an average object size of 20 
KB, 256 data items constitute about 5 MB of data, which is the 
size of a typical Web browser cache that can be easily handled by 
a notebook. 64 data items constitute about 1.25 MB, a data 
volume that can be handled by a modern PDA. Table 2 
summarizes the default values for all model parameters. These 
values are used in all performance experiments if not stated 
otherwise. 

To validate the analytical model, we implement a detailed 
simulation model of the 7DS system. Most assumptions of the 
simulation model are identical to those used for the analytical 
model. Since we consider a 7DS system in operation, the mobile 
devices will start with full buffers in the initial state of the 
simulation. The initial distribution of items in the buffers depends 
heavily on the application scenario. Thus, beside initially empty 
buffers, we consider a best case and a worst case initial 
distribution in the simulation experiments:  

(i) each buffer is filled with B data items chosen from K 
according to a Zipf-like distribution with parameter γ similar 
to the parameter of the request probabilities α(k). This 
constitutes a best-case scenario, since popularity of the data 
items is reflected in the initial content of each buffer.  

Table 2. Default values for model parameters. 

Parameter Value

Number of mobile devices N 64

Transmission Range R 115 m

simulation area A 1000 m  × 1000 m

Query rate λ 1/60

Zipf-parameter of query locality γ 0.9

Number of keys K 1000

Buffer size B 256
 



(ii) each buffer is filled with B data items chosen from K 
according to a uniform distribution. That is, each item is 
equally likely to be contained in a buffer, which constitutes a 
worst-case scenario since popularity of the data items is not 
considered.  

To avoid inaccuracies due to border effects when mobile devices 
are located close to edges of the simulation area, we use the 
toroidal distance model as proposed in [2]. That is, the flat 
square-like area becomes a torus, so that mobile devices located at 
one border of the simulation area can contact mobile devices at 
the opposite border. The mobile devices move according to one of 
the following three mobility models: 

(i) Random placement model (RP): New positions of the mobile 
devices are chosen from the simulation area by a uniform 
distribution between two successive queries. 

(ii) Random waypoint mobility model with pauses (RWP, [12]): 
A mobile device starts at a position chosen from the 
simulation area by a uniform distribution. It moves to a 
destination position that is chosen by a uniform distribution, 
too. The device speed is chosen uniformly from (0,vmax]. 
When the mobile device reaches the destination position, it 
holds for an amount of time chosen uniformly from (0,Thold], 
before choosing a new destination position and continuing 
the process. 

(iii) Reference point group mobility (RPG, [10]): The mobile 
devices move in G groups that cover each a circular area with 
radius rg. Groups move according to the random waypoint 
model with Thold = 0. Each mobile device is associated with a 
reference point uniformly chosen from the area covered by 
the group. The mobile devices are placed at positions that are 
randomly chosen from a circular area with radius rn around 
their reference point. 

Note that the RP mobility model is not realistic, but very close to 
the assumptions of the analytical modeling approach. The RWP 

mobility model is quite realistic for mimicking the movement of 
individual pedestrians. However, it has been shown that the RWP 
model leads to a non-uniform distribution of mobile devices while 
they are moving [12]. Thus, it violates a key assumption of the 
modeling approach. Additionally, the RPG mobility model 
violates the assumption of a substantially change of the vicinity of 
a mobile device between two successive queries. 

To determine the performance of 7DS in the simulation study, we 
count the number of responses received for each query and 
calculate the average hit rate. We conduct 30 batches each 
comprising of 10,000 queries and compute the 99% confidence 
interval for the hit rate using the batch means.  

5.2 Validation of the Analytical Model 
To provide evidence that a steady state analysis is important for 
evaluating the performance of EID systems with limited buffers, 
we derive the duration of the transient phase for a 7DS system 
starting with full buffers. The initial buffer content is chosen 
according to both the worst case and the best case model 
described above. Figure 1 plots the transient phase of the average 
fraction of dataholders, i.e., the fraction of nodes that store a 
particular data item, for the data items with rank 1, 50, and 100, 
respectively. The average fraction of dataholders for each item is 
calculated in intervals of 60 seconds. For all data items, the steady 
state fraction of dataholders is shown as a dashed horizontal line. 
For the experiments, we use the RWP mobility model with 
parameters vmax = 2 m/s and Thold = 30 s. Figure 1 shows that even 
in the worst case scenario with a uniform distribution of buffer 
content, the fraction of dataholders reaches the steady state for a 
popular data item in less than one hour. For less popular data 
items, the fraction of dataholders is close to the steady state values 
in less than 2 hours. If the initial buffer content is chosen 
according to a Zipf-like distribution, the fraction of dataholders is 
close to the steady state fraction almost immediately. Note that 
due to the Zipf-like distribution of access probabilities, the hit rate 
of 7DS is determined by the number of hits to popular data items. 
Thus, hit rate is close to the steady state in below one hour. We 

Table 3. Validation of the analytical model for different mobility models 

Buffer
Size

Analytical 
Model

Hit Rate Mean Mean Mean Mean

32 0.5216 0.519 [ 0.516 , 0.521 ] 0.526 [ 0.523 , 0.529 ] 0.525 [ 0.522 , 0.528 ] 0.519 [ 0.517 , 0.522 ]
64 0.6176 0.615 [ 0.612 , 0.617 ] 0.622 [ 0.618 , 0.625 ] 0.621 [ 0.618 , 0.624 ] 0.617 [ 0.614 , 0.621 ]
96 0.6770 0.668 [ 0.666 , 0.671 ] 0.674 [ 0.670 , 0.679 ] 0.682 [ 0.679 , 0.685 ] 0.675 [ 0.672 , 0.678 ]

128 0.7205 0.712 [ 0.709 , 0.715 ] 0.726 [ 0.723 , 0.729 ] 0.721 [ 0.717 , 0.725 ] 0.719 [ 0.715 , 0.723 ]
160 0.7551 0.749 [ 0.746 , 0.751 ] 0.760 [ 0.755 , 0.764 ] 0.761 [ 0.758 , 0.764 ] 0.754 [ 0.751 , 0.756 ]
192 0.7838 0.776 [ 0.771 , 0.780 ] 0.784 [ 0.781 , 0.788 ] 0.785 [ 0.782 , 0.789 ] 0.779 [ 0.776 , 0.781 ]
224 0.8084 0.802 [ 0.797 , 0.807 ] 0.810 [ 0.806 , 0.813 ] 0.806 [ 0.804 , 0.809 ] 0.805 [ 0.801 , 0.808 ]
256 0.8299 0.826 [ 0.823 , 0.829 ] 0.836 [ 0.833 , 0.839 ] 0.837 [ 0.834 , 0.841 ] 0.825 [ 0.820 , 0.830 ]

Random Placement
Random Waypoint 

v max = 2  m/s 
T hold = 30 s

Random Waypoint 
v max = 32  m/s 

T hold = 30 s

Random Waypoint 
v max = 2  m/s 
T hold = 1200 s

Conf. Interval Conf. Interval Conf. Interval Conf. Interval
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Figure 1. Transient phases of 7DS with initial distribution for buffer content drawn from  

(a) a uniform distribution and (b) a Zipf-like distribution. 



conclude from Figure 1 that a steady state analysis constitutes an 
important tool for the performance evaluation of EID systems 
with limited buffers, since a 7DS system with limited buffer 
capacity reaches steady state in a short amount of time. 
Furthermore, Figure 1 provides some evidence that the steady 
state behavior of a 7DS system is independent of the initial 
distribution of buffer content. In fact, we analyzed the steady state 
performance for various distributions of the initial buffer content 
in a series of simulation experiments not shown due to space 
limitations. These results clearly indicate that the steady state 
performance measures are independent from initial buffer size.  

In the next experiment, we validate the analytical model against 
the results of steady state simulations. We use the RP mobility 
model as well as the RWP mobility model with three different 
parameter settings as shown in Table 3. Table 3 compares the 
analytical results for the basic variant of 7DS as described in 
Section 4.2 to the results of the simulation model for various 
buffer sizes. The table includes the 99% confidence intervals for 
the simulation results. Confirming the claim from Section 4, Table 
3 shows that the simulation reaches a steady state for all mobility 
models. Furthermore, the steady state hit rates for all mobility 
models are almost identical for a given buffer size. The results of 
the analytical model almost always lie with the 99% confidence 
intervals of the simulation results except for small buffer sizes. 
However, the maximum difference to its mean value is 3%. Note 
that [5] reports a maximum error of about 3% for small buffers, 
too, which results from the approximation used in Equation (2). 
We conclude from Table 3 that the steady state hit rate of the 7DS 

system is almost independent of the mobility model and is 
accurately predicted by the analytical model. To gain further 
insight into the impact of the mobility model, we validate the 
analytical model against a simulation study that uses the RPG 
mobility model. Figure 2 (a) plots the hit rate as a function of the 
number of groups G for vmax = 2 m/s, rg = 200 m, and rn = 50 m. 
The mobile devices are distributed to the groups in a round robin 
fashion. In scenarios with few groups, the probability that the 
inquiring node and the origin node are in the same group is high, 
significantly increasing the hit rate above the prediction of the 
analytical model. With an increasing number of groups, the 
probability for reaching the remote origin converges against πR2/A 
and the analytical model closely matches the simulation results. 
We conclude from Figure 2 (a) that the analytical model can be 
applied for estimating hit rate even in scenarios with many small 
groups of mobile devices. In all further simulation studies, we use 
the RWP mobility model with the parameters vmax = 2 m/s and 
Thold = 30 s.  

We further validate the analytical model for different numbers of 
mobile devices N and different buffer sizes B in Figure 2 (b). The 
analytical model closely matches the simulation results, with an 
average relative difference of 0.73% for B = 64 and 0.25% for B = 
256. Again, for small buffer sizes, i.e., B = 64, the analytical 
model underestimates the hit ratio with an average relative 
difference of 2.07% and a maximum of 4.3%. In a validation of 
the analytical model for different transmission ranges R ranging 
from 50 m to 250 m we observe average relative differences 
between the simulation results and the analytical model that range 

(a)

 0

 20

 40

 60

 80

 100

 1  10  100  1000

D
at

ah
ol

de
rs

 (
%

)

Rank

Buffer size 64 / Transmission Range 230 m

P
NP

FIS-P*
FIS-NP*

 (b)

 0

 20

 40

 60

 80

 100

 1  10  100  1000

D
at

ah
ol

de
rs

 (
%

)

Rank

Buffer size 64 / Transmission Range 115 m

P
NP

FIS-P*
FIS-NP*

 (c)

 0

 20

 40

 60

 80

 100

 1  10  100  1000

D
at

ah
ol

de
rs

 (
%

)

Rank

Buffer size 64 / Transmission Range 57.5 m

P
NP

FIS-P*
FIS-NP*

 

(d)

 0

 20

 40

 60

 80

 100

 1  10  100  1000

D
at

ah
ol

de
rs

 (
%

)

Rank

Buffer size 256 / Transmission Range 230 m

P
NP

FIS-P*
FIS-NP*

 (e)

 0

 20

 40

 60

 80

 100

 1  10  100  1000

D
at

ah
ol

de
rs

 (
%

)

Rank

Buffer size 256 / Transmission Range 115 m

P
NP

FIS-P*
FIS-NP*

 (f)

 0

 20

 40

 60

 80

 100

 1  10  100  1000

D
at

ah
ol

de
rs

 (
%

)

Rank

Buffer size 256 / Transmission Range 57.5 m

P
NP

FIS-P*
FIS-NP*

 
Figure 3. Long run behavior of dissemination of data items for different 7DS variants. 
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Figure 2. Validation of the analytical model for (a) different degrees of group mobility, (b) different system sizes,  

and (c) different degrees of locality in the queries. 



from 0.59% for B = 256 to 1.09% for B = 16. We omit a plot of 
the results due to space limitations. To validate the analytical 
model for different distributions of the access probabilities for the 
keys, we plot the hit ratio as a function of the locality in the query 
stream given by the Zipf parameter γ in Figure 2 (c). Again, we 
observe a slight underestimation of hit rate for small locality and 
small buffers, resulting in an average relative difference of 3.71% 
with a maximum of 8.54%. For larger buffers, the average relative 
difference decreases to 0.48%. Figures 2 (b) and (c) show that the 
analytical model provides reasonable estimates of the hit rate for 
various parameter settings. 

We performed various experiments to validate the analytical 
model for other system configuration as well as for the 7DS 
variants NP, P, FIS-NP*, and FIS-P*. We do not include the 
results due to space limitations. However, we state that all 
validations have shown that the analytical model closely matches 
the simulation results. 

5.3 Comparative Evaluation of 7DS Variants 
To evaluate the impact of the different 7DS variants on data 
dissemination in the long run, we analyze the average fraction of 
dataholders for each data item. Figure 3 plots the average fraction 
for each data item for the selected variant of 7DS, i.e., NP, P, FIS-
NP*, and FIS-P*, respectively. The data items are associated with 
their popularity rank. For both variants using power conservation, 
i.e., P and FIS-P*, we use a relative OFF time of 50%. [13] 
reports significant differences in the fraction of dataholders for 
data items with a different popularity during the transient phase. 
Supplementing this result, we find that all 7DS variants perform 

almost equal in the long run. This shows that both power 
conservation and infostations only affect the speed of the 
dissemination process in the transient phase, but not the long run 
behavior. [13] considers only popular data items, which are 
comparable to the items with rank 1 to 5 in our study. The 
experiments presented in [13] show that these items are stored by 
a significant fraction of the mobile devices after a transient phase 
of 25 minutes. Extending the observations of [13], we find that 
even in the long run an unpopular item is hardly stored by any 
mobile device. E.g., with small buffers more than 80% of the data 
items are stored by less than 5% of the mobile devices. 
Comparing the individual 7DS variants, we find that NP and FIS-
NP* store slightly more unpopular data items than P and FIS-P*. 
However, since this observation is not very significant, we 
conclude from Figure 3 that neither the transmission power nor 
the selected variant of 7DS has significant impact on the long run 
behavior. 

Recall that the performance of 7DS not only depends on the hit 
rate of the local buffer, but also on the hit rate of remote buffers. 
Since the long-term remote buffer hit rate cannot be analyzed 
using transient simulation, this component is omitted in [13]. We 
plot the hit rate as a function of the buffer size for all 7DS variants 
and three transmission ranges. Figure 4 shows that the hit rate 
grows with the buffer size in a log-like fashion with a minimum of 
0.48 and a maximum of 0.92 depending on the 7DS variant. 
Decreasing transmission range from 230m to 57.5m results in hit 
rates between 0.37 and 0.77. That is a reduction of about 0.2 for 
NP and FIS-NP*, and by about 0.1 for P and FIS-P*. This 
confirms the observation of [13] that the transmission power has a 
significant impact on 7DS performance. Nevertheless, comparing 

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 50  100  150  200  250

H
it

 R
at

e

Buffer Size

Transmission Range 230 m

P
NP

FIS-P*
FIS-NP*

 (b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 50  100  150  200  250

H
it

 R
at

e

Buffer Size

Transmission Range 115 m

P
NP

FIS-P*
FIS-NP*

 (c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 50  100  150  200  250

H
it

 R
at

e

Buffer Size

Transmission Range 57.5 m

P
NP

FIS-P*
FIS-NP*

 
Figure 4. Comparison of hit rates achieved by different 7DS variants. 

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

H
it

 R
at

e

Duration of OFF Period

Buffer size 64 / Transmission Range 230 m

P
FIS-P*

 (b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

H
it

 R
at

e

Duration of OFF Period

Buffer size 64 / Transmission Range 115 m

P
FIS-P*

 (c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

H
it

 R
at

e

Duration of OFF Period

Buffer size 64 / Transmission Range 57.5 m

P
FIS-P*

 

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

H
it

 R
at

e

Duration of OFF Period

Buffer size 256 / Transmission Range 230 m

P
FIS-P*

 (d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

H
it

 R
at

e

Duration of OFF Period

Buffer size 256 / Transmission Range 115 m

P
FIS-P*

 (e)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

H
it

 R
at

e

Duration of OFF Period

Buffer size 256 / Transmission Range 57.5 m

P
FIS-P*

 
Figure 5. Impact of OFF period on the performance of the 7DS variants P and FIS-P*. 



Figures 3 and 4 shows a different rational behind this conclusion: 
the reduction of the hit rate is due to a reduced number of hits at 
remote buffers for low transmission ranges, and not due to a 
significant different distribution of data items in the buffers of the 
mobile devices. As a consequence, using the variant P and FIS-P* 
instead of NP and FIS-NP*, i.e., enabling power conservation, 
reduces the hit rate by up to 0.1 or 18% for high transmission 
ranges as shown in Figure 4 (a). Recall that power conservation 
reduces the probability for retrieving a data item from a remote 
buffer, since remote mobile devices will respond to queries only 
50% of the time. Infostation-based 7DS variants are less sensitive 
to power conservation, since the infostations do not employ power 
conservation. The performance gain due to infostations is largest 
for very small buffers, where the hit rate is increased by 0.05. An 
additional evidence for the impact of remote hits on the system 
performance is given by Figures 4 (b) and (c). These figures 
indicate that limiting the transmission power reduces the 
performance loss caused by power conservation. In particular for 
a low transmission power, the selected variant of 7DS has no 
impact on the system performance. 

5.4 Sensitivity to Power Conservation 
In the next experiment, we calculate the hit rate as a function of 
the relative duration of the OFF period. The results for different 
buffer sizes and transmission ranges are shown in Figure 5. 
Confirming the conclusions from Figure 4, we find that power 
conservation affects the long-run performance of 7DS only if the 
transmission range is high. In these scenarios, aggressive power 
conservation degrades the hit rate by 22% for a pure P2P system 
and by 16% if infostations are used. This extends the results from 

[13], which reports a significant impact of power conservation for 
all transmission ranges in the transient phase. Consistently for 
both buffer sizes, Figure 5 shows that FIS-P* outperforms P for 
high transmission ranges, in particular if power conservation is 
used aggressively. Comparing Figure 5 (a) to (b) and (d) to (e), 
respectively, we find that an OFF period of 90% yields 
approximately the same hit rate as reducing the transmission range 
from 230m to 115m. That is, using OFF periods of 50%, we have 
a hit rate of 0.66 for high transmission ranges and small buffers 
with the 7DS variant P. Extending the OFF interval to 90% even 
reduces the hit rate to 0.57. In contrast, using a medium 
transmission range and no power conservation yields a hit rate of 
0.62. Recall that this reduction of the transmission rage equals a 
reduction of transmission power from 281.8 mW to 17.6 mW, i.e., 
a reduction of 93.7%. Power conservation as proposed in [13] 
with an OFF period of 0.9 will reduce both the energy required to 
listen to remote queries and the number of generated response 
messages by 90%. Nevertheless, the node has to send an identical 
number of query messages. Since a reduced transmission power 
will save 93.7% of the energy consumption for each message, 
reducing the transmission range saves significantly more power 
than using long OFF periods. Thus, we conclude from Figure 5 
that reducing the transmission power yields a much more efficient 
approach for reducing the power consumption than switching off 
the wireless interface. 

5.5 Impact of Query Repetition 
In a last set of experiments, we extend the results of [13] by 
calculating the average number of repetitions of a query for each 
data item in the long run. We consider a maximum number of 

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 0  200  400  600  800  1000

A
ve

ra
ge

 #
R

ep
et

it
io

ns

Rank

Buffer size 64 / Transmission Range 230 m

NRT=3
NRT=5
NRT=7

 (b)

 0

 1

 2

 3

 4

 5

 6

 7

 0  200  400  600  800  1000

A
ve

ra
ge

 #
R

ep
et

it
io

ns

Rank

Buffer size 64 / Transmission Range 115 m

NRT=3
NRT=5
NRT=7

 (c)

 0

 1

 2

 3

 4

 5

 6

 7

 0  200  400  600  800  1000

A
ve

ra
ge

 #
R

ep
et

it
io

ns

Rank

Buffer size 64 / Transmission Range 57.5 m

NRT=3
NRT=5
NRT=7

 

(d)

 0

 1

 2

 3

 4

 5

 6

 7

 0  200  400  600  800  1000

A
ve

ra
ge

 #
R

ep
et

it
io

ns

Rank

Buffer size 256 / Transmission Range 230 m

NRT=3
NRT=5
NRT=7

 (e)

 0

 1

 2

 3

 4

 5

 6

 7

 0  200  400  600  800  1000

A
ve

ra
ge

 #
R

ep
et

it
io

ns

Rank

Buffer size 256 / Transmission Range 115 m

NRT=3
NRT=5
NRT=7

 (f)

 0

 1

 2

 3

 4

 5

 6

 7

 0  200  400  600  800  1000

A
ve

ra
ge

 #
R

ep
et

it
io

ns

Rank

Buffer size 256 / Transmission Range 57.5 m

NRT=3
NRT=5
NRT=7

 
Figure 6. Average number of query repetitions for each data item. 
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Figure 7. Hit rate of 7DS systems with query repetition. 



repetitions of three, five, and seven. In this experiment, we use the 
7DS variant NP, which achieves the best performance as shown in 
Figure 4. The results for small and large buffers and high, medium 
and low transmission ranges are shown in Figure 6. Figures 6 (a) 
and (d) show that for high transmission ranges the average 
number of query repetitions is significantly below the maximum 
number regardless of the buffer size and the popularity of a data 
item. For low transmission ranges and small buffers, the number 
of maximum repetitions is almost reached for 60% to 80% of the 
data items as shown in Figure 6 (c). Recall from Section 5.3 that 
in these scenarios, 80% of the items are stored in less than 5% of 
the buffers. Larger buffers significantly reduce the average 
number of repetitions at low transmission ranges as shown in 
Figure 6 (f). Here, the average number of repetitions is below six 
even for unpopular data items if the maximum number of 
repetitions is set to seven.  

Figure 6 implies the conclusion that query repetition is particular 
useful for small buffers. To gain further insight into the tradeoff 
between buffer size and the maximum number of query 
repetitions, we calculate the hit rate as a function of the buffer size 
for high, medium and low transmission range. Here, a query is 
counted as a hit if a response is received before the maximum 
number of repetitions is reached. We find that for small buffer 
sizes, aggressive query repetition increases the hit rate by up to 
61% depending on transmission range. However, hit rate is a 
concave function of the number of repetitions, so increasing the 
number of repetitions further than seven will not yield significant 
performance gain. Figure 7 (a) confirms the conjecture from 
Figure 6 that aggressive repetitions will not increase the 
performance of 7DS for high transmission ranges and large buffer 
sizes. That is, if the buffer size exceeds 120, a maximum number 
of three repetitions perform almost equal to five or more 
repetitions. To achieve a reasonable hit rate beyond 0.9, we 
recommend a maximum number of five repetitions for high 
transmission ranges and buffers smaller than 120 entries. For 
larger buffers, three repetitions suffice. If the transmission range is 
medium to small, a hit rate of 0.9 is not reached regardless of the 
maximum number of repetitions. Here, the buffer size must be 
larger than 100 items for a medium transmission ranges and larger 
than 155 for a small transmission ranges. In both cases, a 
maximum of five to seven repetitions is required to achieve a 
reasonable performance. 

CONCLUSION  
We presented an approximate analytical modeling approach for 
analyzing the performance of epidemic dissemination of 
information in MANET in the long run. The modeling approach 
explicitly represents the spread of multiple data items and finite 
LRU buffers at mobile devices. Previous work [13], [14] just 
considered the transient behavior of a single data item, assumed 
unlimited buffers and required off-line simulation for determining 
model parameters. We showed how to derive performance models 
for four variants of 7DS [13], a well-known system for P2P data 
sharing in MANET. 

We presented a comparative evaluation of four 7DS variants P, 
NP, FIS-P* and FIS-NP* as well as investigated the impact of 
power conservation and query repetition. We found that neither 
the transmission range nor the selected variant of 7DS has a 
significant impact on the fraction of dataholders in the long run. 
However, for high transmission ranges the selected variant of 7DS 
has a significant impact on the hit rate. Depending on the 7DS 

variant and the buffer size, hit rates between 0.48 and 0.92 can be 
achieved. 7DS variants NP and FIS-NP* outperform variants P 
and FIS-P* by up to 18%. For low transmission ranges, hit rate 
lies between 0.37 and 0.77 regardless of the 7DS variant. 
Enabling aggressive power conservation in scenarios with high 
transmission ranges degrades hit rate by 22% for a pure P2P 
system, and by 16%, if infostations are additionally provided. 
Furthermore, a reduced transmission range of 115 m yields higher 
hit rates than using long OFF periods at 230 m transmission 
range. Repeating queries up to seven times increases hit rate by up 
to 61% for small buffers and low transmission ranges. Only for 
high transmission ranges and large buffers, query repetition yields 
marginal performance gains. Thus, the derivation of an optimized 
power management strategy for 7DS requires the comprehensive 
study of the trade-off between duration of OFF periods at mobile 
devices, transmission range, and number of repetitions. 
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