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ABSTRACT
In-network data aggregation allows energy-efficient commu-
nication within a sensor network. However, such data aggre-
gation introduces new security challenges. As sensor nodes
are prone to node-compromise, a fraction of nodes might
act maliciously and forge aggregated data. For arbitrary
aggregation functions, the verification of authenticity of ag-
gregated data, i.e., its correctness, integrity, and origin, is
impossible. Thus, one can either aggregate data and save en-
ergy or verify authenticity, not both. We present “ESAWN”,
a protocol that probabilistically relaxes authenticity in the
presence of a fraction of compromised nodes. This enables
a trade-off between probabilistic authenticity and proba-
bilistic, energy-saving data aggregation. Besides theoret-
ical analysis, we present MICA2-based simulation results.
They indicate that even for high probabilities of authen-
ticity and fraction of compromised nodes, ESAWN is more
energy-efficient compared to (100%-)secure but non-aggre-
gating communication. For example, with a fraction of 20%
compromised nodes and 90% authenticity, ESAWN saves up
to 40% energy.

Categories and Subject Descriptors
C.2.0 [Computer Systems Organization]: Computer-
Communication Networks—Security and Protection

General Terms
Security, Algorithms

Keywords
Wireless Sensor Networks, Data Aggregation, Security, Au-
thenticity, Probabilistic Security, Security-Energy Trade-Off

1. INTRODUCTION
In order to reduce the total number of radio transmissions

and to save energy in a wireless sensor network, measured
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data transported towards a sink is usually aggregated [16]:
Each sensor sends its measurement to an aggregation node
that collects measurements from various nodes, computes a
single aggregate, e.g., a summary or digest from this data,
and sends the aggregate further towards the sink. Figure 1
shows an example for data aggregation: For fire detection,
sensors monitor temperatures in a building consisting of two
rooms. In room 1, sensors a and b measure the tempera-
ture at different positions. Nodes a and b send their data,
i.e., their temperature measurements, to aggregation node
x. Node x computes the average of both temperatures and,
if the average is above a certain threshold, forwards the ag-
gregate “1”, a single bit representing fire, towards the sink.
Otherwise, x forwards “0”, no fire. Likewise, nodes c and
d measure the temperature in room 2 and send their data
to aggregation node y. Aggregation can cascade, i.e., mul-
tiple aggregations can take place consecutively, as Fig. 1
shows: if aggregation node z receives at least one “1”, it for-
wards the aggregate “1” to the sink, which is now aware of
a fire and might call for help. Aggregation forms a hierar-
chy, an aggregation-tree, with the sink-node being the root.
This data transport paradigm of in-network processing or
data-fusion saves energy due to fewer radio transmissions
required in comparison to the naive scheme, where all mea-
suring sensor nodes, e.g., a, b, c, d, separately send their indi-
vidual measurements to the sink using traditional multi-hop
communication, cf. [16,19,21].

Figure 1: Example for tree-like data aggregation

However, aggregation imposes a new security problem. An
attacker might physically access a certain percentage of sen-
sor nodes, read out all their memory contents, and compro-
mise or re-program them [3,17]. Compromised sensor nodes
might act maliciously and forge an aggregate. Therefore,
the sink, which is receiving an aggregate from z, must verify
the authenticity of this aggregate.

Verification of authenticity is difficult to implement effi-
ciently in wireless sensor networks: In this paper, it will
be shown that, in the presence of compromised nodes, no
honest (non-compromised) node can verify authenticity of a



received aggregate without additional data from nodes con-
tributing to this aggregate. Yet, sending additional data to
the sink foils the idea of efficient, energy-saving aggregation,
where only an aggregate is forwarded to upper levels in the
aggregation-tree.

This paper presents a new protocol, ESAWN (Extended
Secure Aggregation for Wireless sensor Networks), a pro-
tocol for authentic, yet efficient data aggregation in wire-
less sensor networks. Its main idea is probabilistic verifi-
cation of authenticity. ESAWN probabilistically and par-
tially suspends aggregation within the aggregation-tree to
enable authenticity verifications. This provides probabilisti-
cally relaxed authenticity that is weaker compared to classi-
cal, “strong” authenticity, where the user can always decide
whether a received information is either authentic or not.
However, probabilistically relaxed authenticity in the pres-
ence of a certain fraction of compromised nodes is much more
energy efficient compared to classical authenticity. This
approach allows the user of a sensor network to specify a
trade-off between probabilistically relaxed authenticity and
its energy consumption. Building on ideas published in an
extended abstract [6], ESAWN’s main contributions are:

• In contrast to previous work, e.g., [1, 10, 11,22, 29, 30],
ESAWN supports arbitrary aggregation functions and
is not limited to trivial, linear arithmetic (e.g., average,
“+”, or “*”). Neither multiple sensors monitoring the
same phenomenon nor stochastic correlations between
measurements are required.

• ESAWN provides authenticity against a fraction β of
compromised nodes. The user of a sensor network can
parameterize ESAWN with β. The larger β, the more
energy is consumed by ESAWN.

• Furthermore, the user can parameterize ESAWN with
a percentage P. Parameter P defines the percentage
of authentic aggregates finally received at the sink, i.e.,
a percentage P of all aggregates received at the sink
is authentic. Again, the larger the user demands P to
be, the more energy is consumed by ESAWN.

• With n being the total number of nodes in the sensor
network, the total energy consumption necessary due
to radio transmissions and cryptographic operations is
asymptotically bound to O(n), i.e., per node energy
consumption is bound to O(1).

• All data is transported confidentially, i.e., as long as no
compromised node is participating in an aggregation,
the attacker will not gain any information regarding
the transported data.

• Finally, as asymmetric or public-key cryptography is
often assumed to be too expensive in terms of comput-
ing time and energy dissipation, ESAWN is completely
based on efficient symmetric-key cryptography.

The remainder of this paper is structured as follows: While
Section 2 formally defines aggregation in sensor networks,
Section 3 describes the meaning of authenticity for aggre-
gated data and points out the problem to ensure authentic
aggregation. In Section 4, the supposed attacker model as
well as general network assumptions are given. Sections 5
and 6 explain the basic ESAWN protocol and the probabilis-
tic relaxation of authenticity requirements to save energy.

Section 7 presents ESAWN’s energy analysis and simulation
results using GloMoSim. After an overview of related work
in Section 8, Section 9 concludes this paper.

2. DEFINITIONS
Following Fig. 1, an aggregation-tree is a connected graph

G(V, E), with vertexes V , |V | = n, directed edges E, and no
cycles. V represents the sensor nodes in a sensor network.
Each node in V has a unique “name” or “ID”. The root of G
represents the sink.

Leaf nodes in G are nodes without incoming edges. Leaves,
e.g., S = {a, b, c, d}, are sensors measuring environmental
data A, B, C, D, and sending it towards the sink using ag-
gregation.

An edge −→xz between two vertexes x, z represents an aggre-
gation relation between x and z: node z is called aggregation
node for all nodes x ∈ V with −→xz ∈ E. Nodes x are called
the source nodes for aggregation node z. An aggregation
node z computes an aggregate aggz using an arbitrary ag-
gregation function Fz on source node’s x, y, . . . input data,
e.g., X, Y, . . . : aggz = Fz(X, Y, . . . ). Again, it is important
to point out that aggregation may cascade, i.e., as in Fig. 1,
source nodes x, y for aggregation node z are also aggrega-
tion nodes for source nodes a, b and c, d, respectively. The
set of aggregation nodes is A. If an aggregation node z is
also measuring data, this is represented in G by adding a
new (virtual) leaf zleaf to S and a new edge −−−→zleafz to E.

For all nodes V holds V = S ∪A.
A path P ⊂ V is a sequence of nodes P = {x1, x2, . . . , xl}

with ∀i ∈ {1, . . . , l − 1} : −−−−→xixi+1 ∈ E. The length of a path
is |P | = l.

For a path P = {x1, x2, . . . , xl}, node xi+1 is called the
1-ancestor of xi in G, i.e., the parent-node. The k-ancestor
of a node xi is the (k − 1)-ancestor of the 1-ancestor of xi.

Furthermore, an aggregation path IPx is the set of nodes
that holds IPx = {xi ∈ V \ {x}|∃ path P ⊂ V : x ∈ P ∧
xi ∈ P}. In other words, IPx consists of all ancestors of
x as well as all descendants (children, grandchildren, ...)
of x. For example in Fig. 1, IPa = {x, z, sink} or IPz =
{a, b, c, d, x, y, sink}.

Nodes x1, x2, . . . , xl ∈ IPx lie in a row on IPx, if there is
a path P = {x1, x2, . . . , xl} in G.

For every aggregation node x, the number of source nodes
is called δx. The arithmetic mean δ of all aggregations nodes’

δx is δ =
P

x∈A δx

|A| .
The height h of an aggregation-tree is the length of the

longest path in G.

3. AUTHENTICITY VS. AGGREGATION

3.1 Authentic Aggregation
If some node z receives an aggregate aggx from an aggre-

gation node x, then aggx’s authenticity is made up of two
important properties:

Property I) “Correct Data”:
Aggregation node x must have aggregated correctly, i.e., ag-
gregate aggx is correct against the data it depends on. For
example in Fig. 1, the threshold-temperature for aggregation
node x to send “1” tree-upwards is 500◦C. The non-trivial,
non-linear aggregation function Fx(A, B) of node x is de-
fined as “1”, if A+B

2 ≥ 500◦C, and “0” otherwise. So, with



800◦C from a and 900◦C from b, x must send aggx = 1 to
z – and not a forged agg′x = 0.

Property II) “Correct Nodes”:
All nodes involved in the aggregation, i.e., measuring nodes
and aggregation nodes, must be the nodes that are expected
to take part with respect to their position in the aggregation
tree. For example, if z is expected to receive aggregates from
x and y, it must be able to decide if a received aggregated
aggx is originated from x or y and not from different nodes
like x′ or y′. Note: If nodes such as x or y are compromised
nodes behaving maliciously, another compromised node x′

can always disguise itself and send data to z which indistin-
guishably appears to be from x or y . For more details, see
Section 4.1.

If every aggregate generated in the aggregation tree is
verified against these two properties, then the sink can be
sure that the aggregate it finally receives is authentic: It is
that aggregate computed out of the measured data. There
has been no forgery.

3.2 Conflict between aggregation and
authenticity

Verification of an aggregate’s authenticity is difficult to
realize. According to Fig. 1, node z only receives the ag-
gregate aggx = 1 from x. Assuming an arbitrary aggre-
gation function Fx(A, B) for node x, then z can not ver-
ify Fx(A, B) = aggx without additional information from
source nodes a, b contributing to aggx. As node x could be
compromised and forge aggx, the only way for z to verify
aggx is to obtain that data which aggx depends on: A, B
from nodes a and b. This becomes even more difficult, if
you imagine more than 1 node being compromised in a row
on a path within the aggregation tree: For example, if k = 2
nodes are possibly compromised in a row, like x and z, the
sink requires data not only from x and y, i.e., aggx and
aggy, but also A, B, C, D from a, b, c, d to verify the authen-
ticity of a received aggregate aggz. The sink requires data
from all nodes contributing to aggz on k = 2 levels below
z within the aggregation tree: x, y on level 1 below z and
a, b, c, d on level 2 below z. Yet, sending this additional data
abolishes the idea of energy-saving due to aggregation. This
means that, in the presence of compromised nodes, you can
either save energy by data aggregation or spend energy to
verify the authenticity of data. ESAWN’s basic idea is a
user-customizable trade-off between both.

4. ASSUMPTIONS

4.1 Attacker Model
Tiny sensor hardware is often deployed in public places

and, for financial reasons, assumed not to be tamper-proof.
Therefore, an attacker might compromise some nodes in the
network. The attacker reads out the nodes’ memory, e.g.,
secret keys, and completely controls them. Following defi-
nitions from [13], the attacker is assumed to be static: from
all n nodes within the network, he will choose a set B of
nodes for compromise. He chooses the nodes prior to any
protocol execution and chooses them, for simplicity, all at
once and only one single time. As aggregation paths in G
might change from time to time, and as the attacker does
not know in advance which nodes are important or not, he
chooses nodes completely randomly in the network. He is

not bound to a certain physical region of the network, but
can compromise globally. The consequences of an attacker
being able to compromise nodes not randomly but selectively
are discussed in Section 5.3. Node compromise consumes an
attacker’s resources, for example, time and money, cf. [3,17].
Therefore, |B| is limited and only depending on the capabili-
ties and resources the attacker is able or willing to spend for
node compromise. Furthermore, if the attacker could com-
promise all sensor nodes in the network, there would be no
meaningful security. So, in this paper |B| < n holds, and the
percentage or fraction of compromised nodes in the network
is called β, β = |B|

n < 100%. The sink is assumed to be the
only node in the network the user has access to, e.g., to sub-
mit user-queries to the network and to receive aggregated
results. If the sink could be compromised, there would be
no meaningful authenticity verification possible at the sink.
The sink is therefore assumed not to be compromised.

A protocol running on sensor nodes can never verify the
correctness of extrinsic, measured data. For example, an
attacker could forge a sensor’s temperature reading simply
by putting a lighter next to the sensor hardware. Resulting
temperature readings can only be verified, if there are multi-
ple nodes measuring the same phenomenon, and if there are
stochastic correlations of measured data available. However,
requiring multiple nodes for measuring a single phenomenon
is unrealistic in many scenarios. Therefore and for simplic-
ity, we assume leaves in the aggregation tree to report their
correct measurements tree-upwards. This assumption is in
accordance with related work, e.g., [1, 10, 11, 18, 22, 29–31].
Yet, if stochastic correlations are available due to multiple
sensors measuring the same phenomenon, our scheme can be
easily extended by RANBAR/RANSAC [8] techniques. As
represented by adding another leaf to the aggregation tree,
the same holds for aggregation nodes taking their own mea-
surements into account. In accordance to related work, we
assume for simplicity that aggregation nodes use their cor-
rect measurements. Otherwise, RANBAR/RANSAC tech-
niques would again be required.

We assume all compromised nodes to know each other
and cooperate in their forgery. If they want to, compro-
mised nodes may behave just like honest nodes; however,
they can also behave non-compliant, i.e., to forge an aggre-
gate. Using out-of-band mechanisms, all nodes share the
same knowledge all the time. It is impossible for an honest
node to decide whether another node is compromised or not.
Compromised nodes are active, i.e., they will not only listen
to wireless traffic but are able to generate messages.

The attacker is assumed not to be destructive with his
attacks. Instead, the attacker is interested in gaining more
sophisticated incentives. For example, he will not launch
Denial-of-Service (DoS) attacks, but tries to convince the
sink of a forged temperature in, e.g., a building. More gen-
eral, the goal of the attacker is to successfully forge at least
one aggregate unnoticed by any possible verification proce-
dures. Therefore, ESAWN’s goal is to ensure that every
single honest node will recognize a received but forged ag-
gregate and that such malicious behavior is revealed to the
sink.

4.2 Network Assumptions
In this paper, the structure of an aggregation-tree G is

assumed to be given, e.g., by an appropriate mechanism like
Directed Diffusion [19]. As a result, every node in G knows



its current next-hop towards the sink.
For simplicity, each aggregation is assumed to take place

“synchronized”. All nodes involved in a single aggregation,
i.e., the aggregation node z, the source nodes of z, and pos-
sible verification nodes of z, synchronously know when data
has to be sent and aggregated.

Wireless communication is typically prone to transmission
errors and packet loss and therefore unreliable. Reliable
communication, e.g., based on “Stop-and-Wait”, is expen-
sive in Sensor Networks as shown in [5]. Nevertheless in
this paper, robust communication is assumed, e.g., using a
mechanism like“Stop-and-Wait”as provided by TinyOS [25].
Future work will study the use of more efficient and appro-
priate reliability-mechanism together with ESAWN.

Furthermore, we assume every node to share different
pairwise secret symmetric keys with its (k + 1) ancestors
in G. Such keys are typically exchanged in advance using
an arbitrary key exchange protocol, e.g., [7, 15]. Also, if G
changes from time to time, new keying is easily done by the
same mechanism [7]. Here, integer k is assumed to be a
public, well-known system parameter, which might be dis-
tributed to every sensor during deployment. Every node in
the network, maybe even the attacker, knows k. Section 5.3
discusses, how k is chosen. Sharing keys with the (k + 1)
ancestors in G implies that a node also shares keys with its
descendants on all (k + 1) levels tree-downwards in G.

Moreover, this trivially implies that every node knows
these ancestors and descendants: Every node x has the local
knowledge about its aggregation path IPx on the (k+1) lev-
els and tree-downwards. Although IPx might change from
time to time, it is reasonable to assume x to know this subset
of IPx, e.g., by using an extension of [19].

We assume the number of source nodes per aggregation
node to be randomly distributed with a mean of δ ≥ 1. This
means that on average, every aggregation node z computes
its aggregate out of δ-many source nodes x1, . . . , xδ’s input
X1, . . . , Xδ, i.e., aggz = Fz(X1, . . . , Xδ). Thus, for the total
number of nodes approximately holds

n =
hX

i=0

δi =
δh+1 − 1

δ − 1
,

and therefore h = logδ(1 + (δ − 1)n)− 1.
Again, it is important to point out that in contrast to

related work, neither multiple sensors monitoring the same
phenomenon nor any stochastic correlations between mea-
surements are assumed.

5. ESAWN
Overview: The basic idea of ESAWN is to verify every

aggregate computed by an aggregation node x by the k an-
cestors of x with respect to the authenticity properties of
Sec. 3.1. For example in Fig. 1 with k = 1, nodes a, b, c, d
do not only send their measurements to x and y, but also
to z. Therewith, node z can verify x’s and y’s aggregates.
Also, x and y do not only send their aggregates to z, but
also to the sink. Likewise, the sink can verify z’s aggregate.
The idea is to simply omit aggregation on k levels in the
aggregation-tree.

Here, k is a user configurable parameter which is discussed
in Section 5.3. As long as there are no more than k compro-
mised nodes in a row on any aggregation path IP, ESAWN
guarantees that every honest node can detect forged aggre-

gates. As soon as a node detects a forgery, it raises an alarm
and, recursively, notifies all its (k + 1) ancestors in G.

5.1 Detailed Protocol Description
Figure 2 shows a simplified aggregation. Node a is a source

node for aggregation node x and thereby sends its data A to
x. Node x computes an aggregate aggx and sends it to z1.
For simplicity and as indicated in Fig. 2, in the following
δ = 1 holds: aggx = Fx(A), aggz1

= Fz1(aggx), aggz2
=

Fz2(aggz1
), . . ..

Figure 2: Simplified, typical aggregation

Now with ESAWN, node a does not only send A to x, but
to {x, z1, z2, . . . , zk}, for a given k.

In the same manner, x does not only send its aggregate
Fx(A) = aggx to z1, but to {z1, z2, . . . , z(k+1)}.

In general, every node sends its data not only to its 1-
ancestor within G, but to all (k + 1) ancestors.

Authenticated Encryption:
Every message is encrypted and authenticated before its

transmission using pairwise keys. As assumed in Section 4,
these keys have been exchanged in advance using any key
exchange protocol, e.g., [7, 15]. For example, if a sends A
to {x, z1} for k = 1, it sends EKa,x(A) to x and EKa,z1

(A)
to z1. Here, EKx1,x2

(A) denotes the ciphertext resulting
from authentically encrypting A with a secret pairwise sym-
metric key Kx1,x2 known only to x1 and x2. Authenticated
encryption techniques using pure symmetric keys are, e.g.,
“Encrypt&HMAC” or the use of redundancy, cf. [4, 24, 27].
Note: Authenticated encryption does not only provide data
authenticity, but also data confidentiality. While confiden-
tiality is not in the main focus of this work, confidentiality
is often desirable against pure eavesdropping attackers and
can be realized with negligible additional overhead, see [24].
Therefore in this paper, authenticated encryption is used as
a building block, yet it can be replaced by, e.g., pure HMAC
techniques.

Multi-Hop Communication:
In general, all communication is multi-hop in ESAWN.

For example, if a wants to send EKa,z1
(A) to z1, node a

sends EKa,z1
(A) to x which forwards it to z1. This is pos-

sible, because a knows z1 being the parent-node of x, cf.,
Section 4.2. Here, a malicious node x might deny forward-
ing EKa,z1

(A) to z1 and simply drop EKa,z1
(A). However,

not forwarding but dropping data is a DoS-attack which can
be achieved much more easily in sensor networks, e.g., by
jamming all communication channels. As assumed in Sec-
tion 4.1, the attacker is not destructive, but interested in
gaining incentives with his attack.

5.2 Authenticity Verification
With ESAWN, every node receiving data verifies this data

against two authenticity-properties: I) “Correct Data” and
II) “Correct Nodes”.



I) Correct Data
Each node verifying an aggregate, the verifier node, does

not only receive an aggregate agg from an aggregation node
but also data from the source nodes of the aggregation node
which agg is based on. Using this source data, the veri-
fier recomputes an aggregate agg′ and compares agg′ to the
received agg. If both match, the verifier has successfully
verified property I) of the aggregation.

For example in Fig. 2, verifier z1 is verifying aggregation
node x’s aggregation. Node z1 does not only receive aggx,
but with k = 1 also A from source node a which aggx is
based on. If z1 is honest, it computes an aggregate agg′x
from received data A using the same aggregation function
Fx as x: agg′x = Fx(A). As soon as z1 is receiving aggx from
x, it compares agg′x with aggx. If both aggregates match, z1

has successfully verified property I) of x’s aggregation in the
presence of at most k = 1 malicious node in a row. Other-
wise, if the aggregates do not match, either x is compromised
and forging its aggregate or a is compromised and provides
z1 with false input data A. In this case, the verification has
failed, z1 is aware of malicious behavior regarding x’s aggre-
gation and will “raise an alarm”: using multi-hop commu-
nication as explained above, z1 sends EKz1,z1+i

(ALARM),

1 ≤ i ≤ k + 1, to its (k + 1) ancestors. In addition, every
node receiving an ALARM also sends ALARM to its (k+1)
ancestors. As one of z1’s (k + 1) ancestors, e.g., z2, might
also be malicious, z2 could refuse to forward the ALARM
messages. However, as all of z1’s ancestors expect a message
from z1, either z1’s aggregate or an alarm message, a miss-
ing message is conspicuous. So, after a timeout, e.g., z3 will
itself generate an ALARM message. As a result, the sink
will eventually receive an ALARM message and is therefore
aware of malicious behavior within the sensor network. This
scheme allows compromised nodes to possibly raise “false-
alarms”. However, the attacker wants to remain unnoticed
by the sink and does not want to draw attention to any
malicious behavior going on in the network. As stated in
Section 4.1, the attacker’s goal are incentives, e.g., making
an honest node “accept” a forged aggregate unnoticed.

In a situation with k = 2 compromised nodes in a row and
verifier z2, z2 does not only receive aggz1

, but also aggx and
A. Again assuming that z2 is honest, it computes agg′x =
Fx(A), agg′z1

= F (agg′x), and agg′′z1
= F (aggx). If aggz1

=
aggx = agg′x and agg′z1

= agg′′z1
, then z2 has successfully

verified property I) for the aggregations of nodes x and z1.
Otherwise, z2 presumes malicious behavior and raises an
alarm. With a total of k = 2 malicious nodes in a row,
nodes {a, x}, {x, z1} could have been compromised. Note:
the situation where {a, z1} are compromised with x honest
is equivalent to k = 1. As x is honest, it will not try to forge
an aggregate. The aggregate of compromised node z1 can
be verified by z2 with k = 1.

As ESAWN’s correctness regarding authenticity property
I) is not quite intuitive, this property will be formally proved.

5.2.1 Formal proof of property I) “Correct Data”
In the following, consider all the nodes of a tree G to be

colored. Every node is either white or grey.
Definition: The (k +1)-Ancestor-Closure, (k +1)-AC, of

a tree G is a tree that extends G, G ⊆ (k+1)-AC. (k+1)−AC
extends G by adding additional edges from every node to its
1-ancestor, 2-ancestor, . . . , (k + 1)-ancestor.

Definition: The white-subtree (WS) of G is the subtree

of G consisting only of the white nodes of G as well as the
edges of G between white nodes.

Definition: A tree G is root-connected, if there is a path
from every node to the root of G.

Assumption Ak: On every path in a colored G with
(k + 1) nodes lying in a row, at least one them is white.

Proposition
Ak ⇒ if the root w of G is white, then the WS of (k +1)-

AC of G is root-connected.

Proof
By structural induction on trees consisting of subtrees.

Basis
Consider a tree consisting of only one node, i.e., the root w.
Ak ⇒ if root w is white, then the WS of (k + 1)-AC of w is
trivially root-connected.!

Figure 3: δ-subtrees of G

Induction Hypothesis
Given are δ trees G1, . . . , Gδ. The proposition holds for all
Gi.

Inductive Step
Consider a (k + 1)-AC consisting of δ-subtrees and a new
root w as of Fig. 3.

Ak ⇒ if w is white then

1. if a root of any subtree is white, then WS of (k+1)-AC
is connected to w – the induction hypothesis holds for
this subtree.!

2. if a root w′ of any subtree is grey, then this subtree
is composed of smaller subtrees that hold the propo-
sition. As of assumption Ak, the next white node is
maximum k-nodes away from w′. Finally, (k + 1)-AC
implies the existence of an edge between this white
node and w, cf. Fig. 3.!

Conclusion: The grey nodes represent the compromised
nodes, the white represent the honest nodes. Assumption
Ak is the assumption regarding the attacker, i.e., there are
no more than k compromised nodes in a row taking part
in a verification. Therefore, the property of the WS being
root-connected means that every honest node verifying an
aggregation receives data from another honest node for that
aggregation. Using this data, the honest node can always de-
tect a possible forgery and verify property I)“Correct Data”.

II) Correct Nodes
As k is well-known and every node x knows its aggregation

path IPx, x expects data from its descendants on the (k +1)
levels below x in G. Thus, every node receiving data can



trivially verify property II) using its pairwise symmetric keys
and authenticated encryption techniques.

This scheme confidentially transports aggregated data to-
wards the sink, as long as there is no compromised node
participating in the verification of an aggregate.

As a result, in the presence of up to k compromised nodes
in a row per aggregation path, ESAWN guarantees that ev-
ery honest node in the network detects malicious behavior
regarding authenticity properties. As the sink is assumed to
be honest, the user will become aware of malicious behavior
and can take countermeasures.

5.3 Selecting k
ESAWN’s security heavily depends on a good choice of

k. If the user selects a small k such that there are k′ > k
compromised nodes on at least one aggregation path, these
compromised nodes will successfully forge an aggregate and
violate authenticity properties unnoticed. So, on the one
hand, the user should select k to be very large to cope with
a lot of compromised nodes in the network, i.e., a high β.
On the other hand, a larger k implies higher energy con-
sumption: As shown in Section 5.1, the larger k the more
network traffic and en-/decryptions result. Thus, selecting
k is complicated.

However, if the user can estimate the maximum number n
of nodes that will ever join the sensor network (a maximum
number) and, in addition, estimate a mean δ, i.e., a “typical”
number of source nodes per aggregation in his network, he
can compute a lower bound for k. Under the assumption
that a fraction β of the nodes in the network is compromised,
on average no more than β · h nodes are compromised in a
row on every path in G. Each node on a path, besides the
sink, is compromised with probability β. Consequently, the
user can trade off security against energy-consumption by
selecting k ≥ -β ·h.. The more compromised nodes the user
wants his data transport to be secure against, the more he
has to pay in terms of energy.

A stronger attacker than the one assumed in this paper
might compromise nodes not randomly but selectively. He
might choose |B| nodes in a row in G. As a result, the user
would have to set k to k = |B|. However, as k = |B| is
considerably larger compared to, e.g., k = -β · h., this will
result in very high energy consumption, cf. Section 7.2.

6. PROBABILISTIC RELAXATION
It is quite obvious that basic ESAWN consumes more en-

ergy than aggregation without any security due to the in-
creased number of data transmissions necessary with k =
1, 2, 3, . . .. To cope with the increased energy consumption,
ESAWN allows to probabilistically verify aggregations.

Similar to k, assume another public, well-known system
parameter 0 < p ≤ 1. Aggregation nodes are verified in-
dependently from each other with the same probability p.
This is done as follows:

6.1 Distributing a Seed
First of all, all nodes taking part in verification of an ag-

gregation node x require the same seed or internal state for
a pseudorandom number generator PRNG [27].

Because k is well-known, every child of an aggregation
node x as well as the k ancestors of x know that they have
to take part in verification of x. Therefore, they utilize,

e.g., H(x), a hash value computed from the unique ID x
with a well-known hash-function, as a seed for use in PRNG:
seed := H(x). Thus, all nodes taking part in the verification
of x are aware of the same seed and use it as the initial
internal state for the PRNG.

6.2 Random Verification
Every time, x computes and forwards a new aggregate

• all children of x, the k ancestors of x, and x itself pick
the same pseudorandom number r, 0 ≤ r ≤ 1 using
PRNG with the same internal state.

• If r ≤ p, basic ESAWN verification is executed as de-
scribed in Section 5.1.

• Otherwise, x just forwards its aggregate to its 1-ancestor
in G.

• All children, the k ancestors, and x itself necessarily
update their PRNG’s internal state [27].

Here, the assumption that nodes have synchronized knowl-
edge of an aggregation taking place is important. Without
it, a secure protocol for notifying nodes that an aggregation
is going to take place would be necessary.

Random verification results in a probabilistically relaxed
authenticity, namely authenticity of each aggregate with
probability p. The higher the user selects p, the more of-
ten ESAWN is executed – this results in higher security but
more energy consumption.

As at most k nodes in a row are compromised, the attacker
possibly also knows the seed. It is important to note that
this is not a security problem: Although the attacker will
know, when successful forgery is possible, he can not con-
trol p or whether an actual aggregation from x is verified.
The attacker can still only successfully forge aggregates with
probability (1− p).

6.3 Defining P
The user of the sensor network is most likely not only in-

terested in the authenticity of each individual aggregation
node, but he is interested in the probability that the “final”
aggregate, received at the sink, is authentic. Given that
each individual aggregation is statistically independently au-
thentic with probability p, how can the probability P of an
authentic aggregate received at the sink be computed? In re-
turn, how can p be computed out of a given P? This helps
to parameterize ESAWN regarding a certain user demand
for a probability P.

The probability that “an aggregation node is either hon-
est, or if it is compromised, it must be verified” can be ex-
pressed as: (1 − β + β · p). As each aggregation node is
verified statistically independently, P = (1 − β + β · p)|A|

holds, with A the set of aggregation nodes. On every level i
in G, there are δi aggregation nodes. With the assumed def-
inition of the height of an aggregation tree, the total number
of aggregation nodes can be computed as

|A| =
h−1X

i=1

δi =

logδ(1+(δ−1)n)−2X

i=1

δi =
n− 1

δ
− 1.

Therewith, P = (1− β + β · p)
n−1

δ −1, and finally

p = 1− 1− (n−δ−1)√Pδ

β
.



As with k, the user can trade off security against energy
consumption. The higher his demand for authenticity P,
the larger p will be and the more often ESAWN has to ver-
ify every aggregation. Just as well, the larger the fraction
of compromised nodes β the user wants to protect his data
transport against, the higher is p and the more energy is
consumed. An ESAWN configuration (k, p) is a user deter-
minable trade-off between authenticity and resulting energy
consumption.

7. EVALUATION
Energy consumption is one of the most critical aspects

in sensor networks. To ESAWN’s feasibility and scalabil-
ity, this section analyzes its energy consumption. Thereby,
for better estimation and to put things into perspective,
ESAWN is compared with two different, typical data trans-
port schemes:

1.) Non-Authentic Aggregation: This is standard aggre-
gation as proposed in [19,21]. Data is aggregated on its way
towards the sink, however, without any security and authen-
ticity. In terms of energy consumption, this is a lower bound
for ESAWN. ESAWN can never be more energy-efficient as
Non-Authentic Aggregation, because ESAWN is providing
authenticity in addition to data aggregation.

2.) Authentic Non-Aggregation: In this scheme, measur-
ing nodes authentically encrypt their measurements with
pairwise-secret keys they share with the sink. Nodes within
the network naively forward every received (authentically
encrypted) date further towards the sink. There is no in-
network processing of multiple input data or data-fusion
taking place. The sink is receiving all individually authen-
tically encrypted measurements, decrypts them and aggre-
gates them itself. From a security perspective, Authentic
Non-Aggregation yields classical, “strong” authenticity. The
sink can always decide whether a received date is from a node
it expects it to be from. Authentic Non-Aggregation is some
kind of upper bound or baseline for ESAWN: if ESAWN or a
specific ESAWN configuration (k, p) consumes more energy
than Authentic Non-Aggregation, there would be no use for
ESAWN – the naive Authentic Non-Aggregation scheme is
more secure and more energy efficient. Hence, during eval-
uation, Authentic Non-Aggregation is used as a baseline.
ESAWN’s energy consumption is measured against the en-
ergy consumption of Authentic Non-Aggregation to see, how
much energy can possibly be saved due to probabilistically
relaxing authenticity requirements in the presence of a cer-
tain fraction of compromised nodes.

7.1 Upper Bounds for Energy Consumption
A run is a single protocol execution on the entire aggre-

gation-tree: every leaf takes one measurement that is trans-
ported towards the sink. Depending on the protocol exe-
cuted, i.e., ESAWN, Authentic Non-Aggregation, or Non-
Authentic Aggregation, measurements are possibly authen-
tically encrypted or aggregated by aggregation nodes (sev-
eral times) on their way to the sink.

7.1.1 Non-Authentic Aggregation
As there is no authentic encryption or decryption with

this protocol, the only energy costs arise due to wireless
message transfer. During a run, every node besides the sink
transfers only one message – its aggregate. Therefore, a total
of (n−1) ∈ O(n) messages are transferred. Per node energy

consumption scales with O(1).

7.1.2 Authentic Non-Aggregation
With this protocol, each aggregation node works as a sim-

ple forwarding node, i.e., aggregation nodes forward every
received data further towards the sink. As there are on av-
erage δh leaves in G,

h · δh = (logδ(1 + (δ − 1)n)− 1) · n(δ − 1) + 1
δ

=: f(n, δ)

messages have to be sent for one run. With

lim
n→∞

f(n, δ)
n logδ n

=
δ − 1

δ
< ∞,

f(n, δ) scales with O(n log n). Thus, the number of trans-
missions per node scales with O(log n). In addition, there
are δh encryptions and decryptions, this scales with O(1)
per node. In total, energy consumption scales with O(log n)
per node.

7.1.3 ESAWN
Here, every node x sends its aggregate authentically en-

crypted to x’s 1-ancestor in G. Node x also sends k authen-
tically encrypted aggregates to x’s 1-ancestor for forwarding
to the {2, 3, . . . , (k + 1)}-ancestor of x. In addition, every
node x has to forward all data from the δi nodes on levels
i = 1, . . . , k below x in G. For every node on level i be-
low x in G, x has to forward (k − i + 1) data, respectively.
Altogether, every node sends

(k + 1) +
kX

i=1

δi(k − i + 1)

messages. With a fixed number of compromised nodes |B|,
cf. Section 4.1, this expression scales with O(1) with respect
to the rising total number of nodes n. Furthermore, every
node x authentically encrypts his aggregate (k + 1)-many
times. Node x also receives authentically encrypted data
from all his descendants on levels 1, . . . , (k + 1) below x in
G that have to be decrypted, i.e., x decrypts

k+1X

i=1

δi =
δk+2 − δ

δ − 1

many times. With a fixed |B|, this scales with O(1) per
node.

Overall, ESAWN’s energy consumptions scales with O(1).

7.2 Simulation Results
To further evaluate the energy consumption for configu-

rations (k, p), ESAWN was implemented within the discrete
event simulation environment GloMoSim [26]. The energy
consumption measured was made up of radio transmissions
for messages that are sent during protocol execution as well
as required authentic encryption and decryption operations
respectively. Energy costs for radio transmissions and cryp-
tographic operations were derived from Crossbows’s popular
MICA2 platform running TinyOS, cf. [25]. As a simple static
routing, every node in the network had a simple routing ta-
ble pre-calculated prior to each simulation. Please refer to
Table 1 in the Appendix which sums up important simula-
tion parameters used.

Aforementioned runs were simulated for all three proto-
cols. Fig. 4(a) shows the total energy consumption per node
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Figure 4: Per node energy consumption for different (k, p) and δ

that is accumulated with n = {1000 . . . 10000} randomly
placed nodes and a normally distributed δ = 3. While
Non-Authentic Aggregation and ESAWN consume a fixed
amount of energy per node, regardless of n, energy con-
sumption of Authentic Non-Aggregation rises due to the in-
creasing number of messages that have to be authentically
encrypted and sent. You can clearly see that ESAWN with
(k, p) between (1, 50) and (2, 100) consumes less energy than
Authentic Non-Aggregation. The higher k and the higher p,
the higher the resulting energy consumption. Furthermore,
(2, 50) is more expensive than (1, 100). In general, it can be
observed that with k′ > k, (k′, k

k′ p) is more expensive than
(k, p). In terms of energy consumption, k is more dominant
than p.

To clarify ESAWN’s energy savings compared to the naive,
secure but non-aggregating data transport, Figures 4(b),
5(a), and 5(b) show ESAWN’s relative energy-consumption
with respect to Authentic Non-Aggregation. For example,
Fig. 4(b) shows ESAWN’s relative energy consumption with
varying δ. Using δ = 4 and n = 1000 nodes, ESAWN con-
sumes less than 30% energy compared to Authentic Non-
Aggregation with δ = 4, n = 1000. The higher δ, the higher
ESAWN’s relative energy consumption, because broader trees
with a fixed n are shorter. In a shorter tree, Authentic
Non-Aggregation consumes less energy, so, ESAWN’s rela-
tive energy consumption is higher. Furthermore, ESAWN’s
relative energy consumption falls with growing n, because
aggregation itself already saves more energy with larger n
compared to non-aggregation.

Different values for δ result in energy consumptions run-
ning parallel to each other. In the following, δ will therefore
be fixed to a value of δ = 4.

Fig. 5(a) and 5(b) show the energy consumption necessary
to reach a certain user demand for P with β = 1% compro-
mised nodes, cf. Fig. 5(a), and β = 20%, cf. Fig. 5(b). All
lines in both figures are labeled with configurations (k, p)
that were used to achieve at least P. As p and in par-
ticular k can only be chosen discretely, i.e., using integer
values, some configurations (k, p) achieve not only P, but
are also sufficient for a P ′ > P. For example, in Fig. 5(b),
for n = 4000 sensor nodes, configuration k = 4, p = 100%
achieves P = 50%, but is also sufficient for P = 90%. How-

ever, a configuration with k = 3 or p = 99% would not nei-
ther achieve P = 50% nor P = 90%. Maybe, an impractical
configuration of, e.g., k = 3.72, p = 99.352% would achieve
P = 50%, but not P = 90%: The integer based configu-
rations in Fig. 5 are the most energy-saving configurations
achieving a certain P.

These simulations indicate the immense energy savings
possible, e.g., with n = 10000 nodes, β = 1%, and P ≥ 50%,
up to 80% energy can be saved.

In both figures, there are “jump discontinuities”, e.g., in
Fig. 5(a), at n = 2000 nodes and P = 100%. As β is
fixed and n growing, the total number of compromised nodes
|B| = β ·n grows. Therefore, ESAWN has to cope with more
compromised nodes, which requires higher k. As k is only
discretely increased, “jump discontinuities” are the result.

Discussion: The higher the percentage of compromised
nodes within the sensor network, the more energy has to be
spent to reach a certain authenticity. However, as shown
in Fig. 5(b), even with a high percentage of compromised
nodes, β = 20%, and a high P = 90%, ESAWN still saves
> 40% energy for n = 10000 sensor nodes compared to
Authentic Non-Aggregation. The more the user accepts a
relaxed authenticity P for his aggregates received at the sink,
the more energy can be saved. For example, if the user is
willing to accept only P = 50% authenticity, 45% of energy
can be saved. Using ESAWN, the user can therefore specify
a trade-off between authenticity and energy savings.

8. RELATED WORK
Some work regarding secure data aggregation is based on

privacy homomorphisms, cf. [1, 10, 29]. Here, aggregation
nodes can compute their aggregate from authentically en-
crypted measurements without decryption. However with
this approach, aggregation functions are strictly limited to
trivial linear arithmetic operations, e.g., “+” or “∗”. Also,
most types of comparisons are infeasible [23]. So, support of
arbitrary aggregation functions is, contrary to this work, im-
possible. Furthermore, privacy homomorphisms are prone to
known-plaintext, chosen-plaintext, and replay-attacks, cf. [28].

In “SIA” [22], the sink verifies a received aggregate agg
by randomly asking some sensor and aggregation nodes for
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the data they sent upwards within the aggregation tree.
Using this data, the sink tries to statistically reconstruct
agg. However, this statistical verification of authenticity
only supports trivial mathematical aggregation functions,
such as average or median. This also holds for SIA’s ex-
tension presented in [11]. Similar, SDAP [30] enables the
sink to detect“outliers”, i.e., aggregates that statistically dif-
fer from a mean aggregate. Again, only simple aggregation
functions as “+” or mean are supported, and this approach
requires a lot of nodes to monitor the same phenomenon for
the detection of outliers – which might be unrealistic in some
scenarios.

A protocol to filter maliciously injected data is presented
in [31]. Here, (k + 1) nodes send the same measurement
secured by HMACs to their k-ancestor, respectively, so in-
jected data of up to k compromised nodes can be detected by
majority-vote. Yet, the scheme does not support any form
of aggregation, i.e., in-network-processing by aggregate com-
putation from source nodes’ input data, but simply forwards
all measurements to the sink. Also, (k + 1) sensors are al-
ways required to monitor the same phenomenon. Similar to
ESAWN, the scheme in [9] sends encrypted data from nodes
in an aggregation tree to their predecessors. However, this
only provides confidentiality and not authenticity. As there
is no probabilistic relaxation in [9] as in ESAWN, high en-
ergy consumption is expected. Finally, the scheme does not
support aggregation nodes taking their own measurements
into account, as ESAWN does.

In [12], a probabilistic authentication mechanism is pre-
sented that limits the impact of malicious dummy messages
in a wireless sensor network. The authors present a security
versus energy trade-off. Still, in-network processing of data
towards a sink is not addressed.

The authors of [18] use hash-chains for authenticity: ev-
ery sensor node shares a pairwise secret with the sink that
is used to construct a hash-chain. At time-period t, each
measuring sensor uses the current element of its hash-chain
to send a commitment of its measurement tree-upwards.
At time-period (t + 1), the sink floods the elements of all
hash-chains for period t into the network. Therewith, nodes
can verify previously received commitments. However, this
scheme is secure against only one compromised node, and

nodes can only verify a received aggregate some time after
receiving it and after using it as input for their own aggre-
gation. For many scenarios, this is inappropriate.

9. CONCLUSION
Energy saving aggregation contradicts the verification of

authenticity. You can either aggregate data and save en-
ergy, or omit aggregation and verify data authenticity and
correctness.

This paper presents ESAWN, a user customizable trade-off
between authenticity and energy consumption. In a sensor
network where data is aggregated on its way towards the
sink, the user can probabilistically relax authenticity in the
presence of a certain fraction of compromised nodes to save
energy. Aggregations are verified with probability p in the
presence of a total of |B| compromised nodes. The result
is a customizable probability P that an aggregate received
at the sink has been authentically transported through the
whole network.

This leads to a clearly weaker type of security compared
to a naive non-aggregation scheme. However, ESAWN can
significantly decrease energy-consumption compared to non-
aggregation, i.e., from O(log n) down to O(1) per node.
ESAWN has been implemented for GloMoSim. Resulting
simulations also exhibit the enormous energy savings possi-
ble. For example, with a total of 10000 sensor nodes, 1%
compromised nodes, and P ≥ 90%, over 70% energy can be
saved.
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APPENDIX
Table 1: Simulation parameters

Parameter Value
message length, payload 56 Bytes, 29 Bytes [14]

MAC, radio range 802.11 CSMA/CA, 10m
packet loss model SNR-BOUNDED, -104 dBm noise

data rate 38400 Bit/s [14]
radio energy, CPU energy 16 mA [14], 5 mA [2,5]

per message energy 245 µAs [5]
cipher RC5, 64 Bit key-/block-length [27]

energy per en-/decryption 1,3 µAs [2,20]
#SEEDs per sampling point 50, < 2% relative std. deviation


