
IEEE Copyright Notice

c© 2009 IEEE. Personal use of this material is permitted. However, permis-
sion to reprint/republish this material for advertising or promotional pur-
poses or for creating new collective works for resale or redistribution to servers
or lists, or to reuse any copyrighted component of this work in other works
must be obtained from the IEEE.



Selecting Concurrent Network Architectures
at Runtime

Lars Völker∗, Denis Martin∗, Christoph Werle∗, Martina Zitterbart∗, Ibtissam El Khayat†
∗Institut für Telematik, Universität Karlsruhe (TH), Germany †Ericsson GmbH, Germany

Abstract—The current Internet architecture nicely structures
functionality into layers of protocols. While this reduces com-
plexity, many tweaks have emerged because of the architecture’s
limited flexibility. Cross Layer Functionality corrodes the layer
boundaries, intermediate layers had to be introduced for proto-
cols like MPLS and IPsec, and middleboxes – like in case of NAT –
further complicate the interaction of protocols. To overcome these
problems, many publications have proposed modular solutions
or protocol composition, allowing software engineering ideas to
improve protocol design. Other publications state that instead of
choosing a single common network architecture for the Future
Internet, it might be advantageous to run multiple different
architectures in parallel. We combine both approaches and
make it possible to rapidly create and run different network
architectures in parallel. While this allows for simplified Future
Internet development, it requires the network architecture to
be dynamically chosen. This paper not only presents a node
architecture enabling the parallel operation of different network
architectures but also introduces algorithms for their selection at
runtime.

I. INTRODUCTION

The Future Internet will most certainly not be based on the
proven yet old TCP/IP layer architecture anymore but on a
more versatile network architecture that could be built with
flexible protocol composition as presented in [1]–[5], or even
on concurrent architectures and network virtualization [6], [7].

A more flexible network architecture and network virtual-
ization lead to greater flexibility and extensibility for future
development, especially when used in combination. For one
communication association, the optimal solution might be
statically composed of communication protocols similar to
TCP/IP, but for another association, a dynamically composed
protocol stack without layers could be the much better solu-
tion. Such a flexible solution, however, is inherently coupled
with a problem: the system must determine the optimal set of
network protocols and their configuration at runtime. When
additionally using different approaches and virtualization, this
becomes choosing the optimal instance of a network architec-
ture at runtime.

For the remainder of this paper we call an instance of a
network architecture Netlet. A Netlet implements protocols
for a network architecture using one or more approaches. For
example, one Netlet could implement today’s TCP/IP using
the RNA approach, while another implements a SILO with a
network architecture addressing data instead of nodes.

To achieve the goal of choosing the optimal instance of a
network architecture at runtime, a flexible and generic meta ar-
chitecture and selection process is needed. Consequently, this

paper presents our node architecture and selection algorithm,
which were designed to achieve this.

Our node architecture is a generic framework to instantiate
and run different Netlets of arbitrary network architectures
and approaches. The node architecture comes with some
modifications to today’s application interfaces because several
assumptions have changed. For example, today’s IPv4 and
IPv6 name resolution is commonly done by the application
using a resolver library. This clearly moves the decision of the
address and the address family, and thus the network archi-
tecture, to the application. Some future network architectures
could even choose to not have address but route directly on
a name. Consequently, it is advantageous to hide the name
resolution from the application and move it to the system, so
that the name resolution can be done in respect to the available
Netlets.

The node architecture also transparently supports the con-
cept of network virtualization by introducing an abstraction
for the network access interface. A necessity when a large
number of network architectures is used.

Our selection approach can evaluate different properties of
Netlets to choose the Netlet with the optimal communication
characteristics for the applications current needs. It allows
trade-offs between different aspects, e.g., allowing to optimize
for QoS, energy consumption, and security at the same time.
When using it with an composition based approach, like SILO,
the properties of a Netlet (or in this cas a SILO) must be
calculated. This can be achieved using our property model
and property aggregation.

The paper is structured as follows: After this introduction,
we start with related work in Section II. In Section III
the node architecture is presented as the basis for running
concurrent network architectures. Subsequently, we present
the needed algorithms and approaches to choose the “best”
network architecture at runtime. Section IV presents how the
ratings of different Netlets are compared in comparison with
user/application requirements, while the property aggregation
is detailed in Section V. The paper closes with Conclusion
and Future work in Section VI.

II. RELATED WORK

The SILO architecture [1], [8], [9] consists of composable
services that realize fine-grained protocol functions like “end-
to-end flow control”. For each service, multiple implemen-
tations (methods) may exist. The services needed by an
application are layered vertically in a silo and their order is



determined by a global ontology that describes precedence
relations between them. SILO’s focus is more on the tuning of
a given SILO at runtime than trying to compose the optimal
SILO for a given application. We conclude that SILO can
easily be extended by our algorithm since our approach can
evaluate the properties of a SILO and therefore calculate the
utility of it. This allows the automatic selection of the “best”
SILO available.

A flexible architecture for non-layered protocols is proposed
by [2]. Protocols are replaced with roles, which have neither
strict order nor defined headers in the data units. While this
approach is more powerful and flexible, it does not elaborate
on how requirements and restrictions can be imposed on
protocol heaps except sequence rules. The main contribution
of [2] is a different approach on packet headers, which can be
complemented by choosing the “best” alternative.

The composition of fine-grained protocol functions or ser-
vices to create application specific protocols is not a new
approach. The Function-Based Communication Subsystem (F-
CSS, [3]) allows the instantiation of protocol machines (PMs)
for data streams with different requirements. Fine-grained
protocol functions (PFs) may be implemented by multiple
protocol mechanisms and are configured via protocol parame-
ters. F-CSS defines an interface to the application, which can
be used to specify service criteria. While quantitative service
criteria (e. g. jitter, latency, rate) and qualitative criteria (e. g.
stream synchronization, in-order delivery) influence the actual
choice of the used protocol functions and mechanisms, possi-
ble side-effects on these criteria resulting from the composition
of PFs are not fully considered. With the consideration of
quantitative service criteria when selecting among different
implementations, the composition algorithm of F-CSS went a
bit further than SILO, but did not look into some properties,
e. g. security. The F-CSS approach did look into composing
a protocol stack and even used input from the application
to influence that composition. Using our aggregation and
weighting of properties, the changes of properties due to
composition and the trade-offs can be reflected. Again, our
approach could complement this solution.

RNA [4] attempts to avoid reuse of mechanisms on several
layers by providing a single meta-protocol that is instantiated
for every layer. The services these instances provide are
configurable and thus can be tailored to the need of the
upper and lower layer – this way, recapitulation of services is
avoided and can be done at the most appropriate instance.
The sequencing of fine-grained services follows best current
practice and will be fixed within one layer instance. Our
approach could also be used together with RNA, since RNA’s
current implementation is based on composition of modules,
which will be turned on or off at instantiation.

The ANA System Architecture [10] focuses on an indirec-
tion interface called Information Dispatch Point (IDP). The
smallest units of functionality (Functional Blocks, FBs) are
interconnected via such an IDP. This allows for exchanging
FBs very flexibly during runtime without disrupting the com-
munication paths. The generic interface provided by the IDP

could be easily extended to provide properties of the FBs
they are currently connected to. Therefore, complementing the
ANA Architecture with the concepts presented in this paper
seems to be possible.

The presented approaches focus on the assembling of proto-
cols. While some of them have foreseen the ability to assemble
the protocols based on application or user requirements, most
of them have no good solution for this yet. All of them,
however, can generate a multitude of network stacks, which
can be used for communication. In combination with our
solution all these and possibly other approaches can run side-
by-side and generate many possible network stacks from which
our solution can choose. This way, even offline generation and
online selection is possible allowing more thorough checking
of the generated solutions.

III. THE NODE ARCHITECTURE

The Node Architecture pictured in Figure 1 serves as the
basis to support several network architectures concurrently.
Together with the aggregation of properties and the selection
algorithm presented in this paper, the dynamic selection of
network architectures is achieved.

The Node Architecture focuses on the node-local modeling
of a node’s internals and how its functionalities relate to each
other. Besides the interface definitions between applications,
the communication components, and network interfaces, it pro-
vides the framework for the implementation of inter-working
functionalities and protocols.

In this section, the general outline of the Node Architecture
is described to set the context for this paper and the concepts
detailed within. For an overview of the overall concept,
refer to [11], for more detailed information about the Node
Architecture refer to [12].

Logical View of Node

Application

NA Manager

N
et

le
t C

re
at

or

M
an

ag
em

en
t

Netlet
Selection

Name &
Addr

Mapper

Decision
Engine

N
et

le
t

Multiplexer

Network Accesses

UP

AR

N
et

le
t

NA NANA

N
et

le
t

Application
requirements

User policies for
network selectionUP

AR

Figure 1. Node Architecture

The Node Architecture defines three fundamental abstrac-
tions, which differ from today’s common architectures: The
first one is the user application itself. In contrast to today’s
socket APIs, the application does not need to resolve names
to obtain addresses, nor does it need to know which protocol
it has to use – it just has to provide the desired properties of



the communication channel and, if applicable, the name of
the remote object or node. The second one is the communica-
tion component called Netlet. Unlike today’s protocol stacks,
Netlets are flexible in their configurations and might even be
exchanged during the life-time of a connection. In general,
they bridge the gap between the application’s requirements
and the properties of the underlying networks. Access to the
underlying networks is provided by the third fundamental
abstraction, the Network Access. In contrast to today’s network
interfaces a Network Access allows any level of functionality
already at the lowest level of abstraction: it might be a
physical Network Access, a virtual one, or even one that
already provides reliable and secure transport. These network
properties may be communicated from the Network Access to
the Node Architecture and influence the selection of Netlets.

Netlets are essentially containers for a collection of inter-
working protocols of a specific network architecture and for
a specific task. This could include, e. g., a legacy TCP/IP
stack or could be completely new architectures generated
by approaches like SILO [1] or RNA [4]. A Netlet might
be instantiated for one or more communication associations
between a local application and a remote service. Some Netlets
might also exist without an application association, which
generally applies to network management or control functions,
e. g., routing or distributed name resolution.

Unlike today’s network interfaces, the Network Access
(NA) is a clean interface to support attachment to any under-
lying network technology – this could include Ethernet, Blue-
tooth, or even virtual networks. In fact, this generic interface
was designed to transparently allow for network virtualization.
NAs may provide properties of the network they are connected
to and will be attached to the Network Access Manager.

Netlets connected to the same network usually have some
common understanding of the network. At a minimum, there
needs to be a common understanding of the frame content and
an identifier to allow multiplexing between the communication
streams of different Netlets of the same architecture. To avoid
choosing such invariants common to all architectures, we allow
for architecture specific multiplexers, denoted in Figure 1
through different forms of Netlet bottom connectors.

The Node Architecture allows for running concurrent net-
work architectures side-by-side – each architecture being im-
plemented by a set of Netlets and a multiplexer. Functions
needed across architecture borders like naming & addressing
and management functionalities are supported as well, in an
architecture independent way.

IV. THE SELECTION ALGORITHM

The Selection Algorithm of the node architecture is based on
the selection algorithm of Auto-Configuration for Communica-
tion Security (ACCS) [13], which we have designed to evaluate
the effects and side-effects of adding security protocols to
a TCP/IP stack. The selection algorithm compares different
candidates and chooses the optimal one, based on user or
application requirements. A candidate in the ACCS context is
the combination of TCP/IP and one or more security ptotocols

as wells as a configuration of that protocol. For the node
architecture these candidates are more flexible, they are Netlets
that are possibly composed of functional blocks.

When trying to find the optimum, it is important to find a
trade-off between different properties of the candidates. Spe-
cial care is needed for security, therefore, we have introduced
a special security property in [13] called Effective Bit Strength
(EBS), which will be also used for the new solution. The main
idea behind EBS is that an encryption algorithm, for example,
is only as strong as the easiest attack against it, even if that
means attacking the key exchange.

In the first step of the evaluation of candidates, we filter all
candidates based on system policy or user/application require-
ments. This means candidates that cannot fit the requirements
will not be considered later on. The requirements are basically
restrictions on the properties of the Netlet, e. g., the energy
consumption must be below 100 J.

Based on these properties, we use a well-known decision-
theoretic method, i. e., multi-attribute utility analysis (MAUT)
[14], to aggregate the results of a candidate with respect to
each single property into an overall ranking of each candidate.
MAUT structures a complex decision process, which depends
on multiple attributes, into a per-attribute utility evaluation.
Therefore, for each attribute a utility function has to be
defined which maps the value of an attribute to its corre-
sponding utility. A simple exemplary utility function is shown
in Figure 2. For valid attribute values, i. e., latency values
smaller than the defined maximum, the utility increases with
decreasing latency. The curve models the fact that smaller
latency values are superlinearly prefered over bigger latency
values. Subsequently, to get an overall ranking of the available
candidates, the utility values of a candidate’s attributes are ag-
gregated using the weighted sum as aggregation function. By
adjusting the weights, one determines the relative importance
of attributes, i. e., the share they contribute to the final utility
of a candidate. For n attributes ai, n utility functions ui(), and
n weight parameters wi where 1 ≤ i ≤ n, the overall utility
U of a candidate is then expressed by Equation 1.

U =
n∑

i=1

wi · ui(ai) (1)

This overall rating is then calculated for each candidate and the
highest-rated candidate is then chosen for the communication
association.

This algorithm was not only designed to allow the node
architecture’s decision engine to choose between different
Netlets at runtime, but it was also designed for performance.
Our current implementation running on standard PC hardware
achieves our goals with more than 1000 evaluations of con-
nection request per second.

The determination of a Netlet’s compound properties, which
are used as the input into this process, will be presented next
(in Section V).



Figure 2. Example of a value function: Latency

V. DETERMINING THE NETLETS’ COMPOSITE PROPERTIES

As illustrated in Section III, a Netlet is composed of
multiple functional blocks, each of which provides a certain
service, e. g., realizing reliable data transfer or applying cryp-
tographic functions. Thereby, each functional block influences
the overall behavior of a Netlet. As it is possible that multiple
Netlets are available, it is desirable to allow for comparison of
Netlets with respect to the effects they cause, e. g., the increase
in latency. Therefore, we need to derive a Netlet’s overall
behavior from the behavior of individual functional blocks,
which we assume to be known. On the overall behavior of
a Netlet, it is then possible to apply the decision mechanism
presented in Section IV. Therefore, in this section we present
a method to determine the overall behavior of a Netlet. For
the remainder of this section, we will use the notation shown
in Table I.

Table I
NOTATION

βi Functional Block i
Ψi Effects of Functional Block i
Ξ Global State
~ρ Properties of the data stream
~ρi Properties after Functional Block i
f Transfer function

Referring to Figure 3, we will now explain our notation.
Without loss of generality, assume that functional blocks βi

are ordered corresponding to their order of execution. The
input to Netlet 1 is then processed by the functional blocks
1 to n, which affect the input while passing through with Ψ1

to Ψn, respectively. We express the experienced effects of a
functional block to the properties ~ρ using the transfer function
shown as Equation 2.

~ρi = f(~ρi−1,Ψi,Ξ) (2)

The transfer function is parameterized using Ψi which de-
scribes the effect of a functional block on the properties.
The global state contains information about the node and its
interfaces. The overall effects of a Netlet on the properties can
then be described by Equation 3

~ρn = f(f(...(f(~ρ0,Ψ1,Ξ), ...),Ψn−1,Ξ),Ψn,Ξ) (3)

where ~ρ0 corresponds to initial properties of the input. These
initial properties also include a traffic profile of the application,
i. e., a discrete packet size distribution.

Netlet 1

Node

Application Application…

Netlet Selector

Functional Block 1

Functional Block 2

Functional Block n

…

Netlet k

Functional Block 1

Functional Block 2

Functional Block m

…

…

Interface 1 Interface 2

Figure 3. Concept Overview

After this short introduction into our notation, we will
now focus on the modeling of sample properties and possible
effects of functional blocks on these properties. Thus, showing
how to determine the properties of a Netlet.

The first example will focus on latency of the data process-
ing. Since Latency is cumulative, the latency of a Netlet can
be estimated by summing up the Functional Blocks’ individual
latencies. So the effect on the property would be based on the
add operation, as in Equation 4.

ρla
n = ρla

n−1 + ∆la
n (4)

Functional Block n will add ∆la
n to the latency. This

increment is commonly dependent on the hardware executing
the Functional Block, which could be a CPU core or dedicated
hardware. Furthermore, the latency added by a functional
block might also depend on global state, like the current
frequency of the execution unit, i. e. ∆la

n depends on Ξ.
The modeling of latency is very similar to that of energy
consumption. The Functional Blocks also add ∆e

n to the
overall property and the energy consumption depends on the
execution unit and, e. g., its current frequency.

Both energy consumption and latency also depend on the
length of processed data. Considering the length of data units
is very challenging because it often changes. We therefore
choose length as the next example of a property.

Whenever an application sends data, the Netlet, through
which the application communicates, might need to add addi-
tional data, e. g., for headers or address fields. This increases
the length of the data. The most simple model for length could
therefore just add a ∆:

ρl
i = ρl

i−1 + ∆l
i (5)

The amount of additional data ∆l
i may, however, depend

on the original size of the data transmitted. Therefore, the
application has to specify a predicted communication behavior.
Since most applications do not only communicate with a single
data sizes, we use a traffic profile. The traffic profile specifies
the distribution of a limited number of data sizes, representing



the expected traffic. Bulk data transfers, for example, try
to transport a large amount of data in one direction and
only transfer a small amount of control data in the opposite
direction. When looking at the data units, it is clear that for
one direction the probability of large data units is high and
for smaller ones low, while for the opposite direction the
probabilities are the opposite: a high probability for small data
units and a small probability for large data units.

Another functional block might not just increase the length
by a constant ∆l

i but could increase the data length based
on the original data length. Block-based cryptography, for
instance, might need to pad the data before processing; ef-
fectively increasing the data to the nearest block size b:

ρl
i = d

ρl
i−1

b
e · b (6)

Also a decrease in length is possible, e.g., by using data
compression. However, one must differentiate between two
cases: predictable compression and unpredictable compres-
sion. In the first case we can predict the changes to the
length. This is usually the case with header compression
algorithms. The unpredictable compression, however, is more
difficult to handle. Some data compression algorithms could
even increase the length by adding meta data, when the data is
uncompressable. While this can be modeled with a stochastic
models, the negative effects of the unpredictability of data
compression may be reduced by allowing the data compression
only to be used on data streams and not on data units. Negative
runtime effects of the increased data unit size, like today’s
fragmentation, can be also avoided this way.

The previous examples showed how the functional building
blocks influence transported data. Energy Consumption and
Length are just examples for influenced properties to present
our approach. We have also looked at other properties, e.g.,
latency jitter, bandwidth, packet loss rate, bit error rate, and
effective bit strength.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented our architecture and approach
to support running different network architectures in parallel
and selecting the “best” at runtime. The node architecture
allows running concurrent network architectures side-by-side.
This is done by seamlessly integrating virtualization using
a Network Access abstraction with a modified application
interface, which allows late-binding name resolution. By using
our model of properties, interactions of functional blocks, and
a modified selection approach, the goal of selecting the “best”
network architecture at runtime is achieved.

In addition, our system allows to react to changing situations
by re-evaluating the properties. For example, changing the net-
work protocols because of security issues or the current state
of underlaying (virtual) networks is possible. Also, different
approaches for building protocol stacks can be used in parallel.
Choosing the “best” one makes these approaches compete for
every connection.

Future work includes adding a model for the (virtualized)
network between the nodes. The major challenge will be
to examine how properties of the protocol building blocks
influence the path through the network and how that in turn
influences other properties.

We are in touch with members of the RNA and SILO
projects to discuss and evaluate our approach using differ-
ent architectures. Future work, therefore, includes integrating
RNA’s and SILO’s approaches with our implementation and
evaluating this combination.

ACKNOWLEDGMENT

Parts of this research were carried out within the 4WARD
project of the 7th framework programme (FP7) and are par-
tially funded by the European Commision. We would like to
thank our colleagues in the project for valuable discussions. In
addition, the authors would especially like to thank Christoph
Sorge, Oliver Waldhorst, and Peter Baumung for feedback
while preparing this paper.

REFERENCES

[1] R. Dutta, G. N. Rouskas, I. Baldine, A. Bragg, and D. Stevenson, “The
SILO Architecture for Services Integration, controL, and Optimization
for the Future Internet”, in Proc. IEEE International Conference on
Communications ICC ’07, G. N. Rouskas, Ed., 2007, pp. 1899–1904.

[2] R. Braden, T. Faber, and M. Handley, “From protocol stack to protocol
heap: role-based architecture”, SIGCOMM Comput. Commun. Rev.,
vol. 33, no. 1, pp. 17–22, 2003.

[3] M. Zitterbart, B. Stiller, and A. Tantawy, “A model for flexible high-
performance communication subsystems”, IEEE Journal on Selected
Areas in Communications, vol. 11, no. 4, pp. 507–518, May 1993.

[4] J. D. Touch, Y.-S. Wang, and V. Pingali, “A Recursive Network
Architecture”, White Paper, ISI, Tech. Rep., Oct 2006, iSI-TR-2006-626.

[5] J. Day, Patterns in Network Architecture: A Return to Fundamentals.
Prentice Hall International, Jan 2008.

[6] N. Feamster, L. Gao, and J. Rexford, “How to lease the internet in your
spare time”, SIGCOMM Comput. Commun. Rev., vol. 37, no. 1, pp.
61–64, 2007.

[7] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming the
Internet Impasse through Virtualization”, COMPUTER, pp. 34–41, 2005.

[8] I. Baldine, M. Vellala, A. Wang, G. Rouskas, R. Dutta, and D. Stevenson,
“A Unified Software Architecture to Enable Cross-Layer Design in the
Future Internet”, in Proceedings of 16th International Conference on
Computer Communications and Networks (ICCCN 2007), August 2007,
pp. 26–32.

[9] D. Stevenson, R. Dutta, G. Rouskas, D. Reeves, and I. Baldine, “On
the suitability of composable services for the assurable future internet”,
Whitepaper, RTI and NCSU, Tech. Rep., 2007.

[10] A. Keller, T. Hossmann, M. May, G. Bouabene, C. Jelger, and
C. Tschudin, “A System Architecture for Evolving Protocol Stacks”,
in 17th International Conference on Computer Communications and
Networks (ICCCN), Aug 2008.

[11] L. Völker, D. Martin, I. El Khayat, C. Werle, and M. Zitterbart, “An
Architecture for Concurrent Future Networks”, in 2nd GI/ITG KuVS
Workshop on The Future Internet. Karlsruhe, Deutschland: GI/ITG
Kommunikation und Verteilte Systeme, Nov. 2008.

[12] L. Völker, D. Martin, I. E. Khayat, C. Werle, and M. Zitterbart, “A
Node Architecture for 1000 Future Networks”, in Proceedings of the
International Workshop on the Network of the Future 2009. Dresden,
Germany: IEEE, Jun. 2009, (to appear).

[13] L. Völker, C. Werle, and M. Zitterbart, “Decision Process for
Automated Selection of Security Protocols”, in Proceedings of the
33nd IEEE Conference on Local Computer Networks (LCN 2008).
Montreal, QB, Kanada: IEEE, Oct. 2008, pp. 223–229.

[14] R. Keeney and H. Raiffa, Decisions with multiple objectives: Preferences
and value tradeoffs. J. Wiley, New York, 1976.


