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I. INTRODUCTION

Building a Future Internet with Network Virtualization as
basis [1] results in a very flexible and adaptive solution. A
variety of virtual networks can be instantiated with different
networking protocols; thus, allowing to use protocols tailored
to the applications’ and users’ needs. Nodes within such a
Future Internet have to be structured accordingly [2], [3] and
require specialized functionalities, e. g. enabling the selection
of the “best” available network and protocols for fulfilling
specific communication requests [4].

However, the possibility to add tailored protocols to a
specialized node is not enough since conceiving and imple-
menting these protocols can be very time-consuming and
therefore expensive. A promising way to limit the cost is
the approach of protocol composition as new services may
be created by re-using existing protocol building blocks. In
addition, the usage of an optimized design process and design
tools, may reduce development cost and increase the quality
of the protocols created.

In this paper, we present a life-cycle for protocol compo-
sition and a flexible design process to support it. They lay a
foundation for examining different aspects of protocol com-
position. In addition, design tools currently being developed
will be shown to present how the concepts can be applied.

This paper is structured as follows: In Section II we present
our protocol composition life-cycle. We then discuss the
design process (Section III) as a major part of it and show
first design tools (Section IV). We end this paper with related
work (Section V) and the conclusion (Section VI).

II. A LIFE-CYCLE FOR NETWORK SERVICES

According to the IEEE Software Engineering Glossary [5],
a software life-cycle is defined as “the period of time that
begins when a software product is conceived and ends when
the software is no longer available for use. The software
life-cycle typically includes a concept phase, requirements
phase, design phase, implementation phase, test phase, in-
stallation and checkout phase, operation and maintenance
phase, and, sometimes, retirement phase. [. . . ]”. The software
development model, in contrast, does not include operation,
maintenance, and retirement phases.

In Figure 1, we show our life-cycle for composed network
services. Note that for reducing the system’s overall complex-
ity and especially the complexity of service deployment, we
discern the (off-line) design and development of components

(visible in the upper design time part of the image), and the
(on-line) selection and operation at run time of components in
the image’s lower part.

The life-cycle starts in the image’s upper right with an
elaborate abstract service model, i. e. a formal description of
the service, and its properties. Using specific design tools, a
design as well as an implementation of components reflecting
the service can be created. This may be an iterative process
as design decisions may not only lead to refinements of the
service model but also to changes of the respective properties.

Figure 1. Life-Cycle for Composed Network Services

An implemented component is placed in the component
repository, including its model and general semantics, such
as the component’s description and properties. Several types
of repositories may exist: local repositories on each network
node, remote repositories accessible within an entire network,
and design only repositories for re-using existing components
and models when designing new services. Each type comes
with different complexities and properties, and its choice
depends on the target network’s type and intended use. For
instance, dynamic requests for service components from re-
mote locations might be unsuitable in sensor networks.

For a static and local repository the service deployment and
configuration is done during the deployment of the network
nodes, and configuration is limited to adaptions during run
time. Network infrastructure management and monitoring
functions ensure a stable network during run time and change
service configurations according to the properties of the un-



derlying infrastructure.
Last, but not least, a run time environment, i. e. a service

architecture, is needed for running the instantiated service
components. In [2], [3] we have proposed a possible service
architecture allowing to run several protocol architectures in
parallel – a key aspect for concurrent future networks.

III. DESIGN PROCESS

This section focuses on the design phases of network
services, and thus mostly relates to the upper part of Figure 1
described in the previous chapter.

The development model in Figure 2 puts this design process
in relation to Software Engineering development processes.
The phases of the development model are not self-contained
but will provide feedback to the other phases. Therefore,
as in Software Engineering, the whole design process is an
iterative process that will refine all intermediate models until
the desired end-product is in a satisfactory state. The main
difference to the combined waterfall/incremental development
model often used in software development is, that the network
development model here allows for feedback between any
preceding phases. In addition, the last step of the iterative
or incremental process is the component model, not the actual
source code. This model includes semantics and a complete
documentation of the component, and is stored in a (design)
repository.

Figure 2. Simplified Design Process

According to this model, actual implementations for various
hard- and software platforms can be created – a real advantage
over informal protocol specifications. In addition, the model
can be used for tool supported deployment planning and
network topology design, similar to some vendor specific tools
already existing today [6].

In the design of complex systems, abstractions are in-
evitable. Figure 3 shows the abstraction levels which we
consider suitable for network architecture design. At the Net-
work Level, the network’s topology is regarded, including the
necessary node types. This level gives a coarse overview of the
network. The Node Level describes the services certain node
types provide as a set of components which we call Netlets [2],
[3]. Netlets composed of building blocks are described in more
detail at the Netlet Level. Here, existing building blocks can be
re-used to construct new Netlets. Finally, the Building Block
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Figure 3. Abstraction levels during the Design Process

Level describes the process model of a building block. This
is, for instance, well covered by SDL-MDD [7].

IV. TOOL SUPPORT

For the Netlet Level described in the previous section,
an investigation of possible tool support has taken place.
A prototype of a composition tool was implemented as an
Eclipse plug-in based on the GEF framework. Its main features
is the automated aggregation of functional block properties
as described in [4]. This paper also describes the needed
selection process, which works on the combined properties of
the composite (Netlet). Figure 4 shows the resulting latency
profile of an example Netlet consisting of a fragmentation
block and a block that adds CRC checksums to outgoing
packets.

Currently, we are extending this tool to cover the Node
Level. By emulating the run time selection algorithm, the
tool aids the network architect in finding the most suitable

Figure 4. Property Aggregation Tool



set of Netlets, based on expected traffic and application
requirements.

V. RELATED WORK

In the area of protocol composition various related work
exists. Many systems using service composition have been
proposed, for example [8], [9]. Other work focused more on
formal aspects, like [10], [11]. While in the past the flexibility
of protocol composition was often considered in the context
of high-speed transmission protocols, current work has shifted
more generically towards the Future Internet [12]–[14].

Well-known formal description languages that already have
been applied to networking include the Specification and
Description Language (SDL) [15], Extended State Transition
Language (Estelle) [16], and Language Of Temporal Ordering
Specifications (LOTOS) [17]. Some newer examples include
State Chart XML [18], UML [19], or Cosmogol [20]. In
addition, OPNET Modeler has some visual modeling capabil-
ities for the implementation of protocols and topology design,
which is mainly used for simulation. Description languages
however are just one part to the solution, design processes are
also important. An interesting approach that combines SDL
with model-driven development methods is described in [7].

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a design process and de-
velopment tools for the protocol composition life-cycle, which
can tremendously reduce the cost of creating new protocols for
concurrent protocol architectures within the Future Internet.

In future work, we will further detail the design process
itself and continue the development of the tools sustaining
the process of components design. Also the development of
additional tools and the integration of already existing tools
are major topics for future work.

In the broader context of protocol composition and espe-
cially protocol deployment within a Future Internet, a large
number of open issues arise, requiring dedicated attention.
Figure 5 depicts just some of them.

Figure 5. Service Deployment Issues
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