Decentralized and Autonomous Bootstrapping for IPv6-based Peer-to-Peer Networks

Dr. Roland Bless, Dr. O. Waldhorst, Ch. Mayer, H. Wippel, and many more colleagues

Institute of Telematics, Universität Karlsruhe (TH) Karlsruhe Institute of Technology – kit.edu IPv6 Contest – 2nd German IPv6 Summit May 14, 2009 – HPI Potsdam

Peer-to-Peer Overlay Networks

- Innovation through P2P-based overlays
 - file sharing, streaming videos, Internet telephony, multicast
 - decentralized, scalable
 - self-organizing, autonomous (not depending on servers)
 - seamless deployment, end-system based

- One problem still insufficiently solved
 - Bootstrapping: process of initially finding a peer for joining of the P2P network
 - how to find nodes that are already part of the overlay?
 - \rightarrow often only centralized part in decentralized P2P networks

Decentralized and Autonomous Bootstrapping for IPv6-based Peer-to-Peer Networks

Dr. Roland Bless

Institute of Telematics Universität Karlsruhe (TH)

Peer-to-Peer-Networking

State of Bootstrapping

- Bootstrapping IPv4-based P2P networks
 - server-based peer list: download active peer list
 - host caches: connect to last-known hosts
 - random address probing: actively find peers
- Exemplary Problems
 - no well-defined or standardized approach
 - hard for small P2P networks
 - limited reachability of hosts due to NAT

Decentralized and autonomous bootstrapping is an unsolved problem → IPv6 provides new possibilities!

Decentralized and Autonomous Bootstrapping for IPv6-based Peer-to-Peer Networks

Dr. Roland Bless

Institute of Telematics Universität Karlsruhe (TH)

- Use targeted random address probing for IPv6
 - exploit the large IPv6 address space
 - probe network part "randomly"
 - probe host part deterministically

Universität Karlsruhe (TH)

Generating the Address to Probe

TELEMATICS

TELEMATICS

Registration of Addresses

Summary and Conclusions

- Really decentralized and autonomous bootstrapping makes P2P networks more robust
- Uses IPv6 features
 - larger addresses
 - end-to-end reachability
- Deployment via two approaches
 - simple approach: register unicast address
 - advanced approach: register anycast group
 - offers better resilience and scalability
 - we will work towards standardization of an MLD protocol enhancement in IETF

Decentralized and Autonomous Bootstrapping for IPv6-based Peer-to-Peer Networks

Dr. Roland Bless

Institute of Telematics Universität Karlsruhe (TH)

Thanks! Questions?

www.tm.uka.de/itm