
R/Kademlia: Recursive and Topology-aware
Overlay Routing

Bernhard Heep
Institute of Telematics

Karlsruhe Institute of Technology (KIT)
Zirkel 2, D–76131 Karlsruhe, Germany

Email: heep@kit.edu

Abstract—Structured peer-to-peer overlays offer a basis for
a broad range of applications, such as distributed storage,
application layer multicast, and mobility support. This paper
introduces R/Kademlia, a low bandwidth and low latency variant
of the popular overlay protocol Kademlia. R/Kademlia utilizes
recursive overlay routing instead of iterative lookups of keys,
thus a higher routing performance can be achieved in network
scenarios with churn rates that are characteristic for public KAD
networks. Both Proximity Routing and Proximity Neighbor Selec-
tion are effectively applicable, which leads to a further decrease
of routing latencies. Similar to the original protocol, nodes in
a R/Kademlia network meet other nodes during user-triggered
routing procedures, hence no expensive periodic tasks are needed.
For the simulative evaluation of R/Kademlia, the Performance vs.
Cost framework (PVC) and the overlay framework OverSim were
employed, where both routing modes—iterative and recursive—
were simulated and compared in different network scenarios with
varying churn rates.

I. INTRODUCTION

The deployment of peer-to-peer applications (P2P) has
continually increased during the last several years. Up to now,
various kinds of P2P systems have been developed. They form
the basis for decentralized directory services, multi-media
applications, and on-line games. Additionally, they can provide
application layer multicast (ALM) and ID/locator splitting to
solve many problems of today’s Internet. Commonly, overlay
networks i.e. logical networks on top of the physical network
structure, provide the basis for most P2P systems.

One focus in research into overlay networks are structured
P2P overlays, which are often referred to as distributed hash
tables (DHTs). As they all provide a common service for
applications—the key-based routing (KBR) service [1]—they
are denoted as KBR protocols in this paper. KBR protocols
build overlay structures like rings or hypercubes and offer the
following service: Delivering messages with a destination key
to the overlay node that is currently responsible for the range
of keys the destination key belongs to. In dynamic networks,
issues like node mobility and churn have to be considered
when designing a new KBR protocol, so maintenance is an
important task here, as nodes permanently join and leave the
overlay or change their IP address, mostly without notifying
the nodes they hold in their routing tables (in this paper these
nodes are called peers).

Kademlia [2] is one of the most popular KBR protocols as
it has a simple structure and metric (XOR) and is deployed
with widely distributed Internet applications like eMule and
several BitTorrent clients that utilize its features as a DHT for
decentralized file source searching and tracker-less resource

localization, respectively. One of its prominent features is
that Kademlia nodes meet their peers during application-
triggered lookups and not by performing expensive periodic
maintenance tasks. While Kademlia is very stable under churn
it suffers from high routing latencies caused by its exhaustive
iterative lookup procedure. Additionally, this iterative lookup
procedure is problematical in networks using Network Address
Translation (NAT) or Port Address Translation (PAT), as it is
unknown to the lookup initiator which of the nodes it has to
contact might be inaccessible. Using recursive KBR routing,
only nodes that have been successfully contacted before are
involved in routing procedures.

The contribution of this paper is as follows: We introduce
R/Kademlia, a recursive variant of the widely distributed
Kademlia protocol. R/Kademlia has low bandwidth needs
while achieving lower routing latencies than the original
protocol. Two alternative signaling modes are presented, which
show different qualities e.g. in NAT/PAT scenarios. We in-
troduce Proximity Routing (PR) for R/Kademlia, based on
the prefix metric, and show that PR and Proximity Neighbor
Selection (PNS) can be applied more effectively to R/Kademlia
than to the iterative routing mode, which is shown in the
evaluation section.

The rest of the paper is organized as follows: First, the iter-
ative and recursive routing modes in structured P2P overlays
are analyzed and compared. In the next section, the original
Kademlia protocol with its exhaustive lookup procedure is
briefly described. Then, the common topology adaptation
methods that can be applied to R/Kademlia are introduced.
In the next section, R/Kademlia is described and illustrated
in detail. After that, the evaluation method and the results
are presented and discussed. The paper ends with a survey
of related work and the conclusion with an outlook on future
work.

II. RECURSIVE VS. ITERATIVE ROUTING

In KBR protocols, there are basically two alternative routing
modes for locating the responsible nodes for a destination
key and delivering a message that can be distinguished: The
iterative lookup of keys and recursive routing.

In iterative mode, usually O(logN) nodes have to be asked
sequentially for other nodes closer to the destination key y
until the corresponding destination node Y is identified. Then
the message is sent directly to Y . To find all nodes that are
close to y with respect to the identifier space, usually more
overlay nodes have to be contacted and asked for the closest

2010 Australasian Telecommunication Networks and Applications Conference

978-1-4244-8172-9/10/$26.00 ©2010 IEEE 102

 1

 10

 100

 1000

 10000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ro
u

ti
n

g
 l

a
te

n
c

y
 [
δ
]

P("node is active")

recursive
recursive (+ acks)

iterative
iterative (5 parallel RPCs)

Fig. 1. Routing latencies depending on node activity

 1

 10

 100

 0 500 1000 1500 2000 2500 3000 3500 4000

ro
u

ti
n

g
 l

a
te

n
c

y
 [
δ
]

stabilization interval ts [s]

recursive
recursive (+ acks)

iterative
iterative (5 parallel RPCs)

Fig. 2. Routing latencies depending on stabilization interval

nodes they know. Iterative lookups can be accelerated by using
parallel Remote Procedure Calls (RPCs) i.e. sending lookup
messages to different nodes at the same time. This way, the
total latency of the lookup can be decreased, as failed nodes
do not delay the lookup procedure due to the fact that other
asked nodes are still alive and respond. Additionally, since
physically closer nodes respond faster and so new met nodes
can be asked earlier, the lookup gets further accelerated. Since
the initiator of an iterative lookup can control parallelism, he
is able to ensure that each parallel RPC is sent to a node
that has not been contacted before (if needed), thus avoiding
duplicates. The main drawback of using parallel RPCs is that
they come with a higher bandwidth consumption.

In the recursive mode, O(logN) overlay hops are needed
to reach the destination node Y , the message is sent from
hop to hop—where the next hop is always the closest known
node according to the KBR metric (greedy routing)—until
the destination is reached. After forwarding the message to
its first hop A1, the message’s originator loses control over
the message and its routing path. Issuing parallel queries in
recursive mode is possible, but it is difficult to ensure that
these queries do not converge, i.e. contact the same set of
nodes, hence this can lead to duplicate messages. Hop-by-
hop acknowledgements on the routing path are essential for
low routing latencies, as—when using acks—the occurrence
of failed nodes on the path does not results in a rollback of the
whole routing procedure but only in forwarding the message
to an alternative node.

A detailed analysis of both routing modes can be found
in [3], where the authors show, that in moderate churn sce-
narios recursive routing with activated hop-by-hop acknowl-
edgements is superior in most network scenarios to iterative
routing using parallel RPCs regarding routing latencies. Fig. 1
illustrates some of their results: Here, the latency of a single

Fig. 3. k-buckets filled with NodeHandles

routing procedure (an RPC to a key and the corresponding
response) with 5 hops is plotted on the y-axis with different
values for the probability of a node being alive on the x-axis.
The routing latency is stated as a multiple of the average one-
way latency δ in the concerned network. The effect of parallel
RPCs in iterative mode and of hop-by-hop acknowledgements
in recursive mode is noticeable.

We used the model for the lifetime of overlay nodes in
public KAD networks proposed in [4][5] (Weibull distributed
session time: k = 0.5, λ = 5, 000) and combined it with
the analysis of churn discussed before. The results are shown
in Fig. 2, which illustrates the routing latencies of recursive
and iterative routing modes for different stabilization intervals
ts i.e. the amount of time passing by until a peer is probed
or contacted. It is observable that using this lifetime model,
recursive routing with hop-by-hop acknowledgements achieves
lower routing latencies compared to iterative routing with 5
parallel RPCs up to a stabilization interval of ts ≈ 2, 500 s.
The effective stabilization interval caused by continuously
operated application-triggered overlay routing usually goes far
below this value, thus the usage of a KBR protocol which
supports recursive routing is reasonable in these network
scenarios.

III. ITERATIVE LOOKUPS IN KADEMLIA

Kademlia in its original version is only able to perform
iterative lookups. During these lookups, information about
nodes is sent back in RPC responses and these nodes Ai

are put into a sorted vector of the closest nodes (the result
vector Vy) to y, according to the XOR distance dXOR(Ai, y)
between the nodes’ identifier and the destination key. Lookups
are either application-triggered or part of the maintenance
protocol, which is only needed if not enough application-
triggered lookups have to be performed.

All nodes in a Kademlia network store their peers repre-
sented as NodeHandles into the leaves of a binary tree, the
so called k-buckets. A NodeHandle comprises of a node’s IP
address, the transport protocol port and its 160-bit identifier
(the nodeId). The k-buckets are organized in a similar way
as Pastry’s routing table [6] (with BpD = 1 and k instead
of one redundant node at each position): For each l, where
l is the length of the common nodeId prefix, there is one k-
bucket of size k, which is filled with nodes sharing this nodeId
prefix e.g. a node with nodeId 0011 holds buckets for nodeIds
starting with 1, 01, 000 and so on (s. Fig. 3).

Kademlia uses RPCs for lookups, data handling and overlay
maintenance. For the KBR service, which is discussed here,
only the FIND NODE RPCs are important: In order to
find the nodes that are currently responsible for a specific
key y, first the initiator node browses its own k-buckets for

103

closer nodes to y to initialize the result vector Vy with these
nodes. Then, depending on the degree of parallelism p, it
sends FIND NODE RPCs to the first p nodes of Vy . If a
node receives a FIND NODE RPC, it searches through its
bucket that belongs to the longest common prefix with the
destination key. From all the nodes found in that bucket, those
Ai with the smallest XOR distance (dXOR(Ai, y) = min) to
the destination key y are chosen and returned to the initiator
where the nodes are put into Vy . Then again, the initiator
sends RPCs to the first p nodes in Vy , until no new nodes are
returned that fit into Vy . Then the initiator sends RPCs to all
nodes in Vy that have not been asked so far until all nodes in Vy
have been asked and finally the lookup terminates. This means,
although the responsible node for y is found, the lookup does
not instantly terminate, which leads to an immense amount
of network traffic due to the additional RPCs that have to be
sent.

In this paper, this behavior is called exhaustive iterative
lookup. All nodes that are returned to the initiator during the
lookup are put into the initiator’s k-buckets, if there is space
left in the appropriate bucket. Otherwise, the least recently
used (LRU) node of this bucket is probed and, in case of
failure, replaced.

IV. TOPOLOGY ADAPTATION

To achieve low latencies in KBR protocols like Kademlia,
the overlay nodes must be aware of the underlying network
topology. Without any knowledge, single overlay hops have
the average latency of average end-to-end transmissions in
the underlaying network. Castro et al. [7] distinguish three
kinds of topology adaptation mechanisms for structured P2P
overlays:

1) Proximity Routing: PR considers proximity during rout-
ing procedures and is a trade-off between progress in ID-space
and routing messages through nearby nodes. For each routing
hop, several candidates (A1, ..., An) must be available, where
the one is chosen that is close in the physical network as
well as close to the destination key in ID-space using an
alternative routing metric dpr. For a decision, the latency of all
potential next hops must be determined in advance. As PR only
takes effect on local routing decisions, it is only applicable to
recursive routing procedures.

2) Proximity Neighbor Selection: PNS considers proximity
while constructing the routing tables. If a node Ai is found
that fits in the routing table of X , an existing entry Aj is
displaced if Ai is closer to X than Aj . If there is space for
k entries for this position in the routing tables, the closest k
nodes are kept. When routing a message, only progress in ID-
space is considered. The latency of all peer candidates must
be determined before they can be put into the routing tables.
PNS is applicable to recursive as well as iterative routing, but
more effectively in recursive mode.

3) Topology-based NodeId Assignment: TbNA modifies the
overlay nodes’ identifiers (or parts of them) to map the over-
lay’s ID-space directly onto the underlying network topology.
This way, progress in ID-space causes routing towards the
destination node. This kind of topology adaptation usually
leads to a non-uniform nodeId distribution, thus it is not further
discussed in this paper.

X A1 A2 A3 Y

1. 2. 3. 4.

2.
3.

4.

5.

routed message to destination key y closest nodes to y for originator X

(a) Direct Mode

X A1 A2 A3 Y

1. 2. 3. 4.

8. 7. 6. 5.

routed message to destination key y closest nodes to y for X / Ai

(b) Source-routing Mode

Fig. 4. Signaling modes for R/Kademlia

V. R/KADEMLIA

R/Kademlia is designed to meet the following demands:
• Low key-based routing latencies
• Avoidance of connection problems in NAT/PAT scenarios
• Effective deployment of PNS and PR
• Meeting new peers by application-triggered lookups
• Simple recursive routing and maintenance
• Robustness and resilience against node failures

Basically, R/Kademlia behaves similar to the original Kadem-
lia: It maintains k-buckets as routing table, peers are met
during lookups and not by using periodic tasks, and the XOR
metric dXOR is used to determine distances between keys and
nodes. The main difference of R/Kademlia is the routing and
lookup procedure, both done in a recursive manner. In this
context, a recursive lookup is similar to a recursive routing
procedure, with the difference that no message is delivered but
the node Y responsible for the lookup key y and (optionally)
other close nodes to y return a list of close nodes to y to the
lookup initiator X .

A. Recursive routing in Kademlia

Recursive routing in Kademlia is done in the same greedy
way (s. Sect. II) as e.g. in Pastry. The problem here is that in
Kademlia the originator of a message needs to get information
about nodes that are directly or indirectly involved in the
lookup procedure to maintain and fill up its k-buckets. While
in iterative mode a lookup initiator meets new peers when
receiving FIND NODE responses, this is not possible in plain
recursive mode, as contacted nodes do not respond to the
lookup initiator. The solution for this problem presented here is
to send additional messages from all nodes on the routing path
back to the initiator. Here, two alternative signaling modes for
this task are presented (s. Fig. 4):

1) Direct Mode: In this mode, all nodes on the routing path
forward the message to that node from the local k-buckets
that is closest to the message’s destination key. In addition
they send n nodes from their k-buckets that have the closest
nodeIds to the destination key y according to dXOR, directly
back to the message’s originator X . For this, an appropriate
message type is used. This way, the originator gets the same
amount of information about potential peers he would get in
iterative mode. A drawback here might be that the originator
and the nodes on the routing path are not peers, which could

104

lead to connection problems in NAT/PAT scenarios. Fig. 4(a)
illustrates the Direct Mode.

2) Source-routing Mode: In this mode, the destination node
Y of a key-based routed message sends back the n closest
nodes from his k-buckets to the last hop on the routing path.
This node acts the same way: It merges the closest nodes to
the destination key y it holds in its k-buckets into the message
and forwards it along the source route. This is done until all
nodes on the routing path have merged their closest nodes
into the message and it reaches the originator. This way, the
originator and additionally all nodes on the routing path get
all the information about other nodes the originator would get
in iterative mode. This mode has the advantage that all nodes
only communicate with peers i.e. known nodes. Additionally,
nodes on the routing path meet more nodes than in Direct
Mode, but this comes with a higher bandwidth consumption.
In high churn scenarios it is possible that nodes on the return
path fail and so the originator does not receive the message.
Fig. 4(b) illustrates the Source-routing Mode.

If not enough application-triggered lookups or routing pro-
cedures have to be performed, recursive lookups on random
keys fitting in the k-buckets that have not been used for an
interval of tb are performed as maintenance tasks to keep
the buckets up-to-date. To deal with failed nodes on the
routing path, hop-by-hop acknowledgments are used. If an
acknowledgement is missing, the node is removed from the k-
buckets and the message is forwarded to the secondary closest
node according to dXOR. The time-out interval to needed to
detect a node failure is calculated in a TCP-like manner, using
the mean and variance of the measured round-trip-times:

to = RTTX + 4× σRTTX

If active probing is enabled, all unknown nodes that are
met during a lookup or routing procedure are probed if no
information about their proximity and availability is given.
Not until then are these nodes put into the k-buckets. Active
probing can also be enabled in iterative mode.

R/Kademlia can be used in a mixed mode, parallel to the
original protocol. Though, the signaling modes introduced in
this paper only work if all nodes on the routing path are
capable of using R/Kademlia.

B. PR in R/Kademlia
For the application of Proximity Routing in R/Kademlia, we

propose a different routing metric droute = dKadPR instead of
droute = dXOR for the decision at each node on the routing
path to which peer a message should be forwarded:

dKadPR(X,Y) = dprox(X,Y) + dprefix(X,Y)

dprefix(X,Y) =

{
0 , Xi = Yi ∀ 0 ≤ i < m
m− n , ∃n : Xi = Yi, Xn+1 6= Yn+1

∀ 0 ≤ i ≤ n < m

with X = X1X2...Xm, Y = Y1Y2...Ym, , and dprefix(X,Y) ∈
[0;m] ⊂ N (here with m = 160). dprox(X,Y) ∈ [0; 1),
where a small value indicates a low latency. The use of
dKadPR results in forwarding the message to the node that
has the longest common prefix with the destination key and
is physically close (dprox(X,Y)) to the current node on the
routing path. As peers in k-buckets are organized with respect

to the common prefix with the local node, this exchange of
the metric does not increase the number of routing hops: If
Ai+1 and Ai+2 are peers (from the same k-bucket) of Ai with
dprefix(Ai+1, y) = dprefix(Ai+2, y), y would be in the same
k-bucket of Ai+1 and Ai+2, respectively.

To determine dprox, all peers have to probed in advance,
otherwise dprox is set to 0.99. Alternatively, network coordi-
nate systems can be utilized for estimating the latencies. New
met nodes only have to be contacted, if they fit into a local k-
bucket, thus no probing is needed if the appropriate k-bucket
is full.

C. PNS in R/Kademlia

For Proximity Neighbor Selection in R/Kademlia, the LRU
strategy used for maintaining the k-buckets is replaced by
the policy of filling up all buckets with the physically closest
nodes that are met. For this, all potential peers must be probed
to detect their proximity. This applies to all unknown nodes
that are met during application-triggered routing or lookup
procedures. If an overlay node is found that is physically
closer than any node in the bucket, the farthest node from
the bucket owner is replaced by the new one. Since new peers
also have to be checked for availability before they are put into
the k-buckets, the usage of network coordinate systems is here
inappropriate, as these systems cannot be used for estimating
availability.

VI. EVALUATION

For the evaluation of R/Kademlia the overlay framework
OverSim [8] was deployed to simulate overlay networks with
5,000 nodes. For this, OverSim’s implementation of Kademlia
was extended to support recursive routing, PR, and PNS.
For the simulation of churn, nodes are assigned a Weibull
distributed session time with shape k = 0.5 and a mean
lifetime of 10, 000 seconds. This resembles the churn behavior
in the KAD file sharing network as it has been observed by
[4] and [5]. Alternatively, the mean lifetime is varied between
1,000 and 30,000 seconds for the simulation of high and low
churn scenarios. On each node a test application periodically
sends a 100 bytes probe RPC messages to random nodeIds
of currently alive nodes with a normal distributed interval of
60 seconds. Here, latency means the interval between sending
the RPC message and receiving the response, which is sent
directly to the originator. Failed routing attempts are counted
as successful with a latency of 10 s. For the underlaying
network model, we chose OverSim’s Simple Underlay, with
network latencies calculated from network coordinates, which
are based on Skitter Internet measurements [9]. Each protocol
and parameter combination is simulated 20 times for 1,800 s
after building up the network and a transition phase of 1,800 s.

The simulation results are prepared using the Performance
vs. Cost framework (PVC) [10] to identify the best parameter
combinations regarding routing latencies and bandwidth con-
sumption. The 95% confidence intervals are always calculated,
but they are often too small to be visible in the plots. In
addition to the original Kademlia protocol and R/Kademlia a
third mode—the “simple” iterative mode—is evaluated, where
lookups terminate immediately if a contacted node notifies
the initiator that it is responsible for the destination key. Both
iterative modes are evaluated with 1, 3, and 5 parallel RPCs for

105

 0

 1

 2

 3

 4

 5

 6

 0 200 400 600 800 1000 1200 1400

K
B

R
 L

a
te

n
c

y
 [

s
]

Bandwidth per node [Bytes/s]

exhaustive-iterative (original Kademlia)
iterative

recursive

(a) All parameter combinations of Kademlia and
R/Kademlia

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500 600 700 800 900

K
B

R
 l

a
te

n
c

y
 [

s
]

Bandwidth per node [Bytes/s]

direct mode
source-routing mode

(b) Signaling modes (lifetime mean = 1,000 s)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500 600 700 800 900

K
B

R
 l

a
te

n
c

y
 [

s
]

Bandwidth per node [Bytes/s]

direct mode
source-routing mode

(c) Signaling modes (lifetime mean = 10,000 s)

Fig. 5. Performance vs. Cost (PVC) / convex hulls

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000

K
B

R
 l

a
te

n
c

y
 [

s
]

Node Lifetime (mean) [s]

iterative
iterative PNS

recursive
recursive PR

recursive PNS

Fig. 6. KBR latency (RPCs)

lookups. PNS is applied to R/Kademlia and the simple iterative
mode, PR only to R/Kademlia. The bucket size k is always
set to 8, tb to 1,000 s. All routing modes where evaluated with
active probing enabled and disabled.

The first results shown in Fig. 5 are plotted according to
the PVC rules. In Fig. 5(a) the convex hulls of the results
of the original Kademlia protocol, the simple iterative mode,
and R/Kademlia in a churn scenario with a nodes’ mean
lifetime of 10,000 s using all possible parameter combinations
are shown. R/Kademlia shows the best trade-off between rout-
ing latencies and bandwidth consumption while the original
Kademlia protocol cannot compete at all due to the high costs
of its exhaustive lookup procedure. The simple iterative mode
shows average results. The two different signaling modes
are also compared using the PVC framework in simulated
networks with different lifetime means of overlay nodes. The
corresponding convex hulls are shown in Fig. 5(b) and Fig.
5(c): They illustrate that for R/Kademlia the Direct Mode is
superior to the Source-routing Mode in moderate (s Fig. 5(c))
and low churn scenarios (with a lifetime mean ≥ 10,000 s),
as it comes with lower traffic per node. In networks with
high churn rates (s. Fig. 5(b)), the combination of PNS and
the Source-routing Mode achieves the best results regarding
routing latencies. The reason for this effect is that more nodes
are met and so more nodes have to be probed, which leads to
k-buckets filled up with physically close nodes that have been
recently checked for availability. For all results presented in
the following, the Direct mode has been used.

Fig. 6 shows the RPC latencies of routed RPC messages in
scenarios with different churn rates. Here, active probing is ac-
tivated for all routing modes. It is observable that R/Kademlia

 0

 500

 1000

 1500

 2000

 0 5000 10000 15000 20000 25000 30000

B
a

n
d

w
id

th
 p

e
r

n
o

d
e

 [
B

y
te

s
/s

]

Node lifetime (mean) [s]

exhaustive−iterative (original Kademlia)
iterative

iterative PNS
recursive

recursive PR
recursive PNS

Fig. 7. Bandwidth consumption per node

without topology adaption is faster (≈ 350 ms) than the simple
iterative variant (≈ 630 ms), here using 5 parallel RPCs.
The original protocol—not plotted here—achieves latencies
between 2-5 s depending on the churn rate. The effect of PR
is small in comparison to the results of PNS, but as described
below it comes with almost no additional traffic. Activated
PNS leads to an immense decrease of routing latencies in all
churn scenarios—in iterative mode (≈ 415 ms) but especially
with R/Kademlia (≈ 225 ms). A combination of PNS and PR
does not lead to a further speed-up, hence it is not plotted
here. R/Kademlia with PR activated and the simple iterative
variant using PNS achieve nearly equal routing latencies, but
with a significant difference in the amount of network traffic.

Fig. 7 shows the measured bandwidth consumptions: In
all different churn scenarios R/Kademlia without topology
adaptation and R/Kademlia with PR activated come with a
significant lower bandwidth consumption (≈ 140 Bytes/s) than
both simple iterative routing modes (≈ 300 and 1250 Bytes/s).
The amount of network traffic needed by PNS is about 4 times
as much as in R/Kademlia as well as in the simple iterative
mode. It is obvious that less bandwidth is needed when PR
is activated instead of PNS, since if a node’s bucket is full
newly met nodes do not have to be probed when using PR.
In contrast, all newly met nodes have to be probed to decide
whether a node is put into a bucket or not when using PNS.

Fig. 8 and 9 show the results with active probing disabled,
which leads to a bigger effective stabilization interval ts (s.
Sect. II), hence recursive routing here achieves better results
only in low and moderate churn scenarios. Iterative routing
combined with PNS is faster in high churn scenarios, but
again, this comes with a very high bandwidth consumption.

106

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000

K
B

R
 l

a
te

n
c

y
 [

s
]

Node lifetime (mean) [s]

iterative
iterative PNS

recursive
recursive PR

recursive PNS

Fig. 8. KBR latency (RPCs) without active probing

 0

 500

 1000

 1500

 2000

 0 5000 10000 15000 20000 25000 30000

B
a

n
d

w
id

th
 p

e
r

n
o

d
e

 [
B

y
te

s
/s

]

Node lifetime (mean) [s]

exhaustive−iterative (original Kademlia)
iterative

iterative PNS
recursive

recursive PR
recursive PNS

Fig. 9. Bandwidth consumption per node without active probing

VII. RELATED WORK

Li et al. [11] present a recursive KBR protocol, where
overlay nodes also meet peers during lookup procedures. It
differs from the here proposed R/Kademlia approach in the
organization of routing tables as R/Kademlia derives from
the well-established bucket-based Kademlia protocol. Bamboo
[12] is a KBR protocol designed for high routing performance
in dynamic networks. It also uses recursive routing, but new
peers are only met by periodic tasks. Instead of the XOR
metric two different metrics are applied at the same time.
Limited redundancy in the routing tables is supported, thus
only one node per routing table entry is effected by PNS.
Kaune et al. [13] utilize topology adaptation methods like PNS
for the original iterative Kademlia protocol, which leads to a
noticeable decrease of routing latencies. However, due to the
fact that PR and PNS optimize local routing tables or local
routing decisions, respectively, PR and PNS are more effective
in recursive routing mode as shown in the evaluation section.

VIII. CONCLUSION & FUTURE WORK

In this paper we presented R/Kademlia, a recursive variant
of the popular Kademlia protocol. R/Kademlia achieves very
low latencies—especially when using topology adaptation—
while keeping the overlay traffic small. The here proposed
Proximity Routing mechanism for R/Kademlia achieves no-
table results, nearly without additional network traffic. The
original Kademlia protocol cannot compete at all regarding
routing latencies and bandwidth consumption due to its ex-
haustive iterative lookup procedure. R/Kademlia, as a fast
and economic KBR protocol, can be the basis of future P2P
applications in the Internet with high demands on routing
latencies. The deployment of R/Kademlia in established In-
ternet applications that utilize the original Kademlia proto-
col is reasonable, as the users of these applications would

benefit from R/Kademlia’s higher routing performance and
its NAT/PAT compatibility. The source code of R/Kademlia’s
implementation is included in the OverSim framework and is
available for download at http://www.oversim.org/.

In the future, we plan to evaluate both proposed signaling
modes of R/Kademlia in comparison to the original protocol in
NAT/PAT scenarios to prove R/Kademlia’s advantages in these
networks. Another task for the future is a simulative com-
parison with other KBR protocols, especially with Bamboo.
Here, first results show a better latency/bandwidth trade-off for
R/Kademlia in low churn scenarios. We also intend to apply
other topology adaptation mechanisms [14][15] to R/Kademlia
to achieve a further decrease of KBR routing latencies.

REFERENCES

[1] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica, “Towards
a Common API for Structured Peer-to-Peer Overlays,” in Proceedings
of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS ’03),
vol. 2735/2003, Berkeley, CA, USA, Feb. 20–21, 2003, pp. 33–44.

[2] P. Maymounkov and D. Mazières, “Kademlia: A Peer-to-Peer Informa-
tion System Based on the XOR Metric,” in Peer-to-Peer Systems: First
International Workshop (IPTPS 2002). Revised Papers, vol. 2429/2002,
Cambridge, MA, USA, Mar. 7–8, 2002, pp. 53–65.

[3] D. Wu, Y. Tian, and K.-W. Ng, “Analytical Study on Improving DHT
Lookup Performance under Churn,” in P2P ’06: Proceedings of the Sixth
IEEE International Conference on Peer-to-Peer Computing, Cambridge,
UK, Sep. 6–8, 2006, pp. 249–258.

[4] D. Stutzbach and R. Rejaie, “Understanding Churn in Peer-to-Peer
Networks,” in IMC ’06: Proceedings of the 6th ACM SIGCOMM
conference on Internet measurement, Rio de Janeiro, Brazil, Oct. 25–27,
2006, pp. 189–202.

[5] M. Steiner, T. En-Najjary, and E. W. Biersack, “Long Term Study of Peer
Behavior in the KAD DHT,” IEEE/ACM Transactions on Networking,
vol. 17, no. 6, pp. 1371–1384, Oct. 2009.

[6] A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized Object
Location, and Routing for Large-Scale Peer-to-Peer Systems,” in Mid-
dleware 2001 : Proceedings of the IFIP/ACM International Conference
on Distributed Systems Platforms, vol. 2218/2001, Heidelberg, Germany,
Nov. 12–16, 2001, pp. 329–350.

[7] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron, “Exploiting network
proximity in distributed hash tables,” in International Workshop on
Future Directions in Distributed Computing (FuDiCo), Bertinoro, Italy,
Jun. 3–7, 2002, pp. 52–55.

[8] I. Baumgart, B. Heep, and S. Krause, “OverSim: A flexible overlay
network simulation framework,” in Proceedings of 10th IEEE Global
Internet Symposium (GI ’07) in conjunction with IEEE INFOCOM 2007,
Anchorage, AK, USA, May 6–12, 2007, pp. 79–84.

[9] B. Huffak, D. Plummer, Daniel, D. Moore, and K. Claffy, “Topology
Discovery by Active Probing,” in SAINT-W ’02: Proceedings of the 2002
Symposium on Applications and the Internet (SAINT) Workshops, Nara,
Japan, Jan./Feb. 28–1, 2002, pp. 90–96.

[10] J. Li, J. Stribling, R. Morris, M. F. Kaashoek, and T. M. Gil, “A
performance vs. cost framework for evaluating DHT design tradeoffs
under churn,” in INFOCOM 2005. 24th Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings IEEE,
vol. 1, Miami, FL, USA, Mar. 13–17, 2005, pp. 225–236.

[11] J. Li, J. Stribling, R. Morris, and M. F. Kaashoek, “Bandwidth-efficient
management of DHT routing tables,” in Proceedings of the 2nd USENIX
Symposium on Networked Systems Design and Implementation (NSDI
’05), Boston, Massachusetts, May 2–4, 2005.

[12] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling Churn in a
DHT,” in ATEC ’04: Proceedings of the annual conference on USENIX
Annual Technical Conference, Boston, MA, USA, Jun./Jul. 27–2, 2004,
pp. 127–140.

[13] S. Kaune, T. Lauinger, A. Kovacevic, and K. Pussep, “Embracing the
Peer Next Door: Proximity in Kademlia,” in Proceedings of the Eighth
International Conference on Peer-to-Peer Computing (P2P’08), Aachen,
Germany, Sep. 8–11, 2008, pp. 343–350.

[14] F. Hartmann and B. Heep, “Coordinate-based Routing: Refining NodeIds
in Structured Peer-to-Peer Systems,” in Proceedings of the Interna-
tional Conference on Ultra Modern Telecommunications & Workshops
(ICUMT’09), St. Petersburg, Russia, Oct. 12–14, 2009.

[15] B. Heep, “dCBR: A Global View on Network Coordinates for More
Efficient Peer-to-Peer Systems,” in Proceedings of the Second Interna-
tional Conference on Ubiquitous and Future Networks (ICUFN 2010),
Jeju Island, South Korea, Jun. 16–18, 2010, pp. 372–377.

107

