A Socio- And Locality-Aware Overlay for
User-Centric Networking

Martin Florian, Fabian Hartmann, Ingmar Baumgart
Institute of Telematics, Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany
{martin.florian,fabian.hartmann,ingmar.baumgart } @kit.edu

Abstract—The recent success of online social networks hints
at the general interest in socio-aware, user-centric networking
applications. At the same time, mobile consumer devices are
becoming both more powerful and more widespread. As an
implication of these trends, user-centric networking can be real-
ized directly between the users’ devices, i.e. without depending
on a server-based infrastructure. In this paper, we propose
a novel hybrid overlay to facilitate the direct communication
between user devices and enable the deployment of complex user-
centric applications in a fully decentralized manner. In contrast
to traditional overlay designs, our approach leverages social
context to achieve a high interconnection between the devices
of befriended users. Our overlay ensures the locality of user
traffic and supports the delivery of messages to devices that are
unavailable at the time of sending. Simulation results show that
our approach achieves close to optimal latencies and is scalable
in terms of network size.

I. INTRODUCTION

Communication in today’s computer networks is heavily
influenced by two trends: the ubiquitous use of powerful
mobile devices like laptops and smartphones and the demand
for networking services among people sharing a certain social
context (e.g. friends or co-workers). Currently such commu-
nication services are provided by companies like Facebook or
Dropbox using a client/server architecture.

This paradigm has three drawbacks for the user. First,
Internet access is always required, even if both communication
partners are in the same local network or in geographical
vicinity to each other. Second, even if mobile Internet access
is available, mobile data traffic is expensive and a growing
challenge for providers, which pass increasing costs down to
their customers. Third, privacy concerns exist for storing large
amounts of sensitive data central servers.

A novel approach to tackle these problems is a communi-
cation paradigm called user-centric networking: We assume
that each user possesses several (mobile or stationary) devices
which are powerful enough to provide services in a peer-to-
peer manner, without depending on servers in the Internet. In
contrast to classic peer-to-peer approaches we define the user
as a communication target, not the device which he is currently
using.

Since communication between users within a social context
is often geographically local, mobile devices may span wire-
less ad-hoc networks or use a local area network to exchange
data in a decentralized way, which avoids inefficient triangular
routing via a central server.

Currently, the development of user-centric peer-to-peer ap-
plications is complex and error-prone, as developers face
non-trivial challenges like the discovery and selection of
communication partners and the establishment of efficient
communication links. Addressing these difficulties, the idea
of a middleware called SODESSON was proposed in our
previous work [2]. However our previous publication gives
only a rough overview of SODESSON’s architecture and
design goals. Specifically, no specific techniques were pro-
posed for achieving the vision stated in it. Also, neither the
locality of communication nor the prospects of leveraging
social information for improving aspects of the system had
been discussed previously.

In this paper we propose a novel peer-to-peer overlay that
can form the foundation for the SODESSON middleware,
enabling message delivery and distributed storage between
user devices in a fully-decentralized manner. In our approach,
we exploit properties inherent to user-centric communication,
which are neglected by traditional overlay designs:

o The social context of users: Communication patterns and
information sharing in user-centric networking are heav-
ily influenced by social factors. We leverage information
from the social graph to improve overall performance and
security and to enable socio-aware services.

o The locality of communication: Socially connected peo-
ple tend to be geographically close to each other [18].
Thus, our system enforces the locality of communication
processes and keeps user traffic as local as possible (e.g.
within the local LAN or an enterprise network).

o The mobility of users: Mobile devices may become tem-
porarily disconnected from their communication partners
or simply switched off by their owners. This leads to a
partitioning of the overlay network which raises the need
to temporarily store messages and deliver them at a later
time - a challenge we address in the presented design.

II. KEY CONCEPTS

The SODESSON middleware provides a simple and con-
sistent interface for the rapid development of fully decen-
tralized user-centric applications. This interface is based on
the publish/subscribe pattern of communication. To illustrate
the use of publish/subscribe for user-centric networking we
consider an instant messaging (IM) application and scenario:
Alice wants to send a message to her friend Bob. Using
SODESSON, she would do this by publishing her text to the

topic "IM@Bob” to which all IM-enabled devices of Bob are
subscribed. The actual delivery of messages is than handled
by the SODESSON middleware. Application developers are
not burdened with addressing individual devices or choosing
means of message delivery.

Based on this design, we make following key contributions:

o For dealing with network partitioning and the shifting
availability of user devices, we propose an approach for
realizing the offline delivery of messages in a decen-
tralized publish/subscribe system. Messages to currently
unavailable subscribers are persisted by the overlay and
delivered once the recipients can be reached.

« In order to leverage the frequent geographic proximity of
socially connected communication partners, we enhanced
our basic publish/subscribe approach towards enabling
the direct message exchange between publishers and
subscribers. Such a Direct Publish achieves a significant
improvement of communication locality while preserving
the decoupling between publishers and subscribers to a
great extend.

o In user-centric networking, communication is based on
social connections and thus usually directed at known
(and trusted) contacts of a user. Addressing this, we
propose a novel overlay data structure called Social Table
that keeps track of devices belonging to befriended users.
Our contribution enables the efficient and low-latency
lookup of likely communication endpoints.

III. DESIGN

In the following, we will present the specific designs of our
contributions in this paper.

A. Basic System

At its core, the system we propose consists of a key-
based routing/distributed hash table (KBR/DHT) layer and a
decentralized publish/subscribe system running on top of it.
The publish/subscribe component is based on the concept of
rendezvous-points (RP) in a KBR overlay, similarly to the
approach used in [17]. In this scheme, each publish/subscribe
topic is mapped to an overlay node that is to be responsible for
it - a rendezvous point (RP). RPs collect and store subscrip-
tions (in the DHT) and disseminate publications. Following
holds for each RP to a given topic 7

rp(T) = responsible(hash(T))

This approach was chosen over publish-/subscribe systems
based on multicast trees, like SCRIBE [7], as it is better suited
towards scenarios with few! subscribers per topic and smaller
amounts of transmitted messages.

For the KBR component, we propose the use of
R/Kademlia [10], an enhanced version of Kademlia [13]
with locality-enhancing modifications like recursive routing,
Proximity Routing (PR) (biasing routing decisions towards

'In contrast to a microblogging service like Twitter we focus on commu-
nication between users which personally know and trust each other. Typically
the average number of contacts per user is in the order of 100 (e.g. [18]).

Event: rp(7) receives a publication p; for topic T
for each S; in subscribers(T) do
DHT.put(pack(T, Si, p;))
end for
if |subscribers(T)| >0 then
DHT .put(p;)
end if

Event: rp(T) receives an ACK from .S; for publication p;
DHT.delete(pack(T, Si,pj))

Event: rp(T) is notified by the inactive subscriber (to 7) S;,
that he has become reachable again
packs < DHT.get Packs(T, S;)
for each pack in packs do
pub < DHT.get Publication(T , pack.publicationI D)
send pub to S;

end for
Fig. 1. Pending Acknowledgment (PACK) life cycle and use.

Put PACK

Publish Call

Fig. 2. Publish mechanism using pending acknowledgments (PACKSs).

next-hops that are closer in terms of RTT) and Proximity
Neighbor Selection (PNS) (preferring close nodes when filling
routing tables). In addition to the locality-enhancing modifica-
tions from R/Kademlia, the key-based routing component was
extended with an additional sibling table as described in [4].
This measure improves the performance of R/Kademlia in the
context of supporting a DHT running on top of it.

In the context of user-centric networking, the use of a basic
overlay-based publish/subscribe approach leaves a number
of open challenges: First, realizing offline delivery, which
means the delayed delivery of messages to contacts that are
unavailable at the time of sending. Second, the outlined pub-
lish/subscribe system has suboptimal locality properties, as all
messages need to be routed via a possibly far-away RP. Lastly,
classical KBR overlays like R/Kademlia are agnostic towards
the social fabric between users. In this way, opportunities for
leveraging social context are missed.

B. Offline Delivery

Communication services with offline delivery, i.e. services
where messages can be delivered at a later time if a receiver
is unavailable at the time of sending, are highly desirable
in the context of user-centric networking. Instant messaging
applications, for example, are expected to support the delayed

delivery of messages to temporarily unavailable contacts.
However, the provision of offline delivery is not trivial in a
fully decentralized system. Also, according to our knowledge,
no mechanisms for enabling offline delivery in overlay-based
publish/subscribe systems have been proposed yet.

Here, we suggest a novel approach based on pending
acknowledgment objects, or PACKs, stored in a DHT. Ac-
knowledgments (ACKs) are usually used to signal the suc-
cessful arrival of a message to the message sender. Since
in an rendezvous-based publish/subscribe system the RP is
responsible for disseminating messages to the final subscribers,
the RP is also proposed here as the collector of ACKs. With
this setup, the PACK pack(T,S;,p;) is defined as an object
stored in the DHT, that signals to rp(7) that an ACK from
the subscriber S; needs to be received for the publication
p;. In the context of enabling offline delivery, this enables
the persistence of p; in the DHT until it has been received
by all proper recipients. Since PACK objects are stored in
the DHT and make use of the DHT’s replication system,
the PACK mechanism does not depend on the availability of
one particular RP node. Once the responsibility for a topic
changes (e.g. when the old RP leaves the network), the new
RP simply requests the relevant set of PACKs from the DHT.
The algorithm for our PACK approach is presented in Fig. 1.
Additionally, Fig. 2 contains a graphical representation of the
approach.

C. Direct Publish

The publish/subscribe system outlined so far provides a
reliable, decentralized infrastructure for instant communication
supporting offline delivery using the PACK mechanism. In the
context of user-centric communication however, it has one
major drawback: the existence of triangular routing in the
way publications are distributed. Every time a node wants to
publish a message to a topic 7, it has to pass it to rp(T)
first, introducing an additional routing hop. Triangular routing
has an especially strong impact in user-centric networking
scenarios where communication partners are assumed to be
socially connected. Closeness in the social graph was shown
to correlate with geographical proximity [18] and thus likely
also with proximity in the Internet graph. In a user-centric net-
working scenario, communication partners are thus expected
to be close to each other in the underlying network while
the RP-based dissemination of publications always routes
messages over random and likely far-away nodes. In this way,
a high increase in latency is induced in comparison to direct
communication and a significant amount of avoidable non-
local traffic is being generated (especially when large amounts
of data are transferred, e.g. in file transfer applications).

Addressing this, we propose a novel mechanism for en-
abling locality-optimized communication in rendezvous-based
publish/subscribe systems, called Direct Publish. Our goal is
the elimination of the additional routing hop over the RP,
thus enabling the direct data exchange between publishers
and subscribers. With our solution, we still maintain a certain
degree of decoupling between publishers and subscribers, in
the sense that a publisher to 7 may know the subscribers to

Event: P wants to publish a publication p; to topic T
subscriber Hash = 0
for each S; in P.subscribers(T) do
send p; to S;
subscriber Hash < subscriber Hash @ S;.id
end for
send (p;, subscriber Hash) to rp(T)

Event: rp(T) receives (p;, subscriber Hash) from P
for each S; in subscribers(T) do
DHT.put(pack(T, S;,p;))
subscriber Hash < subscriber Hash @ S;.id
end for
if |subscribers(T)| > 0 then
DHT.put(p;)
end if
if subscriber Hash = 0 then
{ P’s view was correct. }

return
else
if 3S € subscribers(T) so that S.id = subscriber Hash
then
{ Only S was wrong in P’s view. }
send p; to S
notify P about S
else

{ More than one subscriber was wrong in P’s view. }
send p; to all S; € subscribers(T)
notify P about all S; € subscribers(T)
end if
end if

Fig. 3. Direct Publish mechanics.

Notification

Notification
Notification

Fig. 4. Publish mechanism using Direct Publish.

T (allowing him to communicate with them efficiently) but
is not required to. Whenever a publisher’s knowledge on his
topic’s subscriber set is incomplete or wrong, the responsible
RP jumps in to ensure correct publication delivery.

As a preliminary step to the presented algorithm, rp(7)
informs potential publishers about the subscribers to 7. Ded-
icated subscription notification messages are used for this
purpose. For simplicity, we now assume that all potential
publishers to 7 are also subscribers to 72. Then, rp(7T) sends

2This is not a compulsory constraint and can be relaxed at will, resulting
in a slightly more complex design.

subscription notifications to a subscriber S to 7 whenever he
senses that S’s view on subscribers(T) is inconsistent.

A detailed overview of the complete Direct Publish mech-
anism is presented in Fig. 3. As can be seen, rp(7T) is still
notified about P’s publication, despite the fact that it’s trans-
mitted directly to 7’s subscribers as well. This is necessary
for various reasons. Firstly, it can never be guaranteed that P’s
information on the subscriber set is up to date. P might, for
example, have missed a subscription notification because of
routing failures, or an additional subscriber might have joined
the overlay shortly before the publication was sent. Secondly,
in the case of unavailable subscribers, the publications must
be persisted for later recovery. Additionally, PACKs must be
generated. In the current design, all those tasks are carried
out by rp(7), so it is unavoidable that it gets informed
about the publication as well. Concerning the calculation of a
subscriberHash for each publication, this serves mainly the
conservation of bandwidth, as only one value needs to be
transmitted instead of a list of all subscribers. The simple
XOR-based hashing function we use has the advantage that,
if only one subscriber is missing or wrong in P’s view
(which is a likely case), the ID of that subscriber can be
discovered without any additional communication overhead
(see Fig. 3). The presented mechanism can be extended to
allow the discovery of several missed nodes, using additional
knowledge about the history of changes to the subscriber set. If
no match can be found, the publication must be retransmitted
to all subscribers.

The proposed Direct Publish does not interfere with the
previously introduced PACK mechanism. RPs still generate
PACK objects and subscribers still send ACK messages for
a topic 7 to rp(T), regardless from who they received the
respective publication. Fig. 4 visualizes this in the context of
a publish operation using the Direct Publish mechanism. In
general however, responsibilities are shifted away from RP
nodes when using Direct Publish, thus also improving the
overall resilience of the system.

D. Social Routing Table

The presented core functionality of the SODESSON mid-
dleware and its improvements for a better locality of commu-
nication were additionally enhanced by a social dimension,
by providing an integration point with the social graph. In the
following, we introduce a novel data structure for Kademlia-
based KBR overlays - the Social Table.

The Social Table of a node holds the node IDs of all
devices that belong to friends of the node’s owner or to
the node owner himself. In R/Kademlia’s bucket maintenance
logic, it has a lower priority than the sibling table but a
higher priority than ordinary buckets. This enables a biasing
of overlay routing decisions towards socially connected nodes
used to improve the overlay’s security. Furthermore, the Social
Table is an approach to achieve forwarding of sensitive data
via trustworthy nodes, without modifying the actual routing
algorithm. Since this approach is agnostic to the actual routing
algorithm, it can also be applied to other routing mechanisms,
both structured and unstructured. As demonstrated in [9],

unstructured overlay techniques like flooding loose some of
their disadvantages when restricting the set of queried nodes
to only such nodes with whom social connections exist.

We now propose two basic approaches for populating Social
Tables - passive and active friend device discovery:

Passive Discovery: Whenever a node S receives a publica-
tion directly from a publisher P (when using Direct Publish),
it checks whether the owner of P is a friend of S’s owner. If
s0, S adds P to its Social Table. Additionally, it sends a friend
device notification to P. Since friendship links are assumed to
be bidirectional, P can then add S to its own Social Table as
well.

Active Discovery: In this approach, the identifiers of all
devices belonging to a user are stored in one location in
the DHT, namely under the user’s ID. Thus, whenever a
device joins the overlay it first adds its own device ID to
this collection. Additionally, it retrieves the node IDs of the
devices of both his owner and that of his owner’s friends. Upon
receiving the identifiers, it sends friend device notification
messages to all those devices, informing them about its own
presence. Upon receiving a response from a contacted friend
device, it can be added to the Social Table. Device entries
are persisted only for a limited amount of time in order to
better adapt to churn. Thus, available devices refresh their own
entries periodically by reinserting their own device IDs into
the DHT.

1V. EVALUATION

We implemented a prototype of our system using the
overlay simulation framework OverSim [3]. We then used
this prototype for performing an extensive simulation study of
our design. In the following, we will present our simulation
scenario, including several novel enhancements to OverSim,
and the results from our measurements.

A. Test Scenario and Additions to OverSim

In order to model user-centric networking scenarios, we
first enhanced OverSim by introducing user entities and device
ownership. Additionally, we realized the support for a social
network between user entities and provided a generator for
social graphs based on the small-world graph generation
algorithm by Watts and Strogatz ([19]). The parameters for the
algorithm were chosen to model the properties of real social
networks.

To model user behavior, we designed a SODESSON test
application that mimics the communication patterns of a
fictional SODESSON-based instant messaging application. We
developed our test application with realism in mind, setting its
parameters according to studies on instant messaging behav-
ior (e.g., [1]). All presented simulations were run in conditions
of moderate churn, with churn parameterizations based on
measurements taken for the KAD network [16]. We used
OverSim’s SimpleUnderlay underlay abstraction for modeling
the underlying network. It offers a network coordinate-based
approximation of IP routing topologies. Node coordinates were
generated based on real Internet latency measurements, using
the Skitter [11] datasets.

Plain RP-based Publish/Subscribe with PACKs —+—
Direct Publish with Social Table X

o 1

gg 0.98 .

>& 096 ++ 7 A

§g 0.94

$5 092

=] 0.9 : : : : : : :
0 1000 2000 3000 4000 5000 6000 7000 8000

Number of Nodes

o 1

T3 0.98

32 096t

S5 0.94 | s N %

28 oe2| T '

[=]

0.9 - - - - - - -
0 1000 2000 3000 4000 5000 6000 7000 8000
Number of Nodes

Fig. 5. Delivery ratios for undelayed (i.e. directly deliverable) and delayed
(i.e. persisted for later delivery due to unavailability of recipient) publications.

The number of users in the system was set to be equal to
the average size of the active node population, i.e. the number
of nodes running both SODESSON and the SODESSON test
application. Thus, with the churn model we use, every user
owned an average of two active devices over the course of
the simulation of which one device on average was online
at every given moment. The social graph between users was
generated in such a way that users have an average of 100
friends (corresponding observations in Facebook [18]).

The following plots show average values and 95% confi-
dence intervals from 5 simulation runs with 20000 seconds of
observation time per run.

B. Overall Performance

For determining the basic properties of our proposal and the
impact of the different modifications we suggest, we evaluated
a wide range of possible configurations of our system with
node populations varying between 500 and 8000 nodes. In
each simulation, 10% of the node population consisted of
active nodes, being associated with users and running the
SODESSON test application. The other 90% performed only
RP-related tasks and were not owned by users. In the fol-
lowing, we will present the results measured for two specific
configurations that we consider most descriptive, namely:

« A plain rendezvous-based publish/subscribe system using

only the PACK mechanism described in this paper.

o A rendezvous-based publish/subscribe system using the
PACK and Direct Publish mechanisms introduced here
as well as Social Tables with both passive and active
friend device discovery. This configuration bundles all
techniques and modifications we propose in this paper.

The results for these configurations can be seen in Fig. 5 and
Fig. 6. Fig. 5 focuses on the measured delivery ratios, i.e. the
percentage of publications that were delivered correctly and
within a justifiable time frame. The upper diagram depicts the
delivery ratio for undelayed publications, i.e. publications that
could be delivered right after the time of publication, while
the lower one shows the same ratio for publications that first
had to be persisted by the system as the receiver was not
available at the time of publication (delayed publications).

Plain RP-based Publish/Subscribe with PACKs ——
Direct Publish with Social Table X

0.4

T T T

: AN o n L n n n
0 1000 2000 3000 4000 5000 6000 7000 8000
Number of Nodes

Publish/Receive
Latency [s]
o
N
(4]

Fig. 6. Latency for undelayed publications.

For undelayed publications, the modifications proposed in this
paper induce a significant improvement in delivery ratios. This
can be explained through the additional layer of control over
the RP exercised by publishers when using Direct Publish, as
well as through the better overlay interconnection achieved
through the use of Social Tables. Concerning the measured
delivery ratios, the reported message losses are by a great
margin due to the effects of churn on the availability of DHT
entries, as was confirmed by reference simulation studies. We
are currently working on ways to improve the DHTs perfor-
mance under churn. Concerning the measured communication
latencies (Fig. 6), a significant improvement can be observed
from the use of the modifications we propose in this paper.
This is mostly due to the elimination of triangular routing
realized through the use of Direct Publish.

C. Effects of Locality Improvements

An additional simulation study was performed to further
evaluate the impact of the locality improvements proposed
in Section III-C. Again, 90% of the node population were
not associated with a user and performed only RP-related
tasks. The remaining 10%, i.e. the nodes actually engaging in
user-centric communication over SODESSON, were clustered
in the underlay so that the RTT between any two of them
never exceeded 20 ms. This setup reflects the assumption that
socially connected users are likely to be geographically close
to each other as well.

As a comparative measure for the locality of communi-
cation, we calculated the latency stretch for each delivered
message. We define the latency stretch for a delivered message
as follows:

publish/receive latency

stretch := - - —
theoretical latency for direct transmission

The results of the latency stretch evaluation can be seen
in Fig. 7. In the upper half, the stretch was calculated in a
simulation with random node placement like in Section IV-B,
while the lower half shows the results for the configuration
introduced in this section. Again, the large locality improve-
ment through the use of Direct Publish becomes evident. The
order of magnitude of the improvement in a scenario where the
communicating nodes are close to each other in the underlay
is especially notable. On a side note, the latency stretch in the
scenario with clustering of befriended nodes appears higher
than when placing nodes randomly, even for configurations
employing Direct Publish and Social Tables. This is because
even when using Direct Publish, occasional triangular routing

Plain RP-based Publish/Subscribe with PACKs —+—
Direct Publish, no Social Table
Direct Publish with Social Table -«

e

| ®-% TV — *

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of Nodes

Latency Stretch
(Random Node Placement)
- N W s OO N OO

20

S *
0 1000 2000 3000 4000 5000 6000 7000 8000
Number of Nodes

7
[

B 120

= I !
= I
53 100 {"l/l]
85 80
nE

ga
8% 40f

R}
—£

5

%

3

&)

Fig. 7. Latency Stretch in two scenarios: (1) Nodes have random underlay
coordinates. (2) Befriended nodes are close to each other in the underlay.

can not be avoided, e.g. when a publisher does not know the
full subscriber set for a topic. When communication partners
are close to each other, such rare detours over a far away RP
can influence the average latency stretch result. Additionally,
SODESSON latencies are always a little higher than fictional
ideal latencies, as the encapsulation in SODESSON messages
induces a slight increase in size.

D. Bandwidth Consumption

Our last series of simulations aims at assessing the scal-
ability of our solution and the modifications proposed in
this paper, focusing mainly on the bandwidth consumption
of our designs. Fully active node populations were used this
time, i.e. all nodes were associated with a user entity and
ran an instance of the SODESSON test application. Based
on the previous results and the desirability to support socio-
aware services, only configurations with Direct Publish and an
activated Social Table were considered here. Both the active
and passive approaches for discovering befriended nodes were
evaluated in the simulations.

As an experiment, additional runs were also made where
proximity neighbor selection (PNS) was turned off in the
overlay routing component. PNS is a mechanism used in
R/Kademlia and other KBR protocols to prefer proximate
nodes when filling the routing table, thus promoting a greater
locality of communication [10], [14]. The extra runs were
motivated by the suspicion that a large part of the current
prototype’s bandwidth consumption is due to ping traffic
induced by PNS. The results from our bandwidth evaluation
are depicted in Fig. 8.

Our results confirm the suspicions concerning PNS: the
bandwidth overhead generated by our solution is significantly
lower when PNS is deactivated. The same effect can likely
be achieved by employing a network coordinate system like

DP, ST with passive discovery —+—
DP, ST with active discovery
DP, ST with passive discovery, no PNS -3
DP, ST with active discovery, no PNS [

= 1200
£ 1100

§ 1000

P 900

£ 800

g 700

g o

; y BT RR L
£ ool ¥ m e
S 300 gRw

S 200

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of Nodes

E 0-19 *
T 08 g A —

Q

= 0.17 A

= 0.16

S os| 1

K . M

g om

£ o013 1
K 5]

2 gq2) @R 0]

Qo

=]

o

1
0 1000 2000 3000 4000 5000 6000 7000 8000
Number of Nodes

Fig. 8. Bandwidth consumption and communication latency. For brevity of
representation, we abbreviated Direct Publish as DP and the use of Social
Tables as ST.

600
500
400

300

200

100 .
0 ™

SODESSON DHT Overlay

Bytes Sent/s

Total

Fig. 9. Bandwidth distribution for a configuration with Direct Publish and
Social Tables with active discovery. PNS is disabled.

Vivaldi [8] for assessing the proximity of nodes instead of
sending ping messages. However, this was not attempted in the
scope of this work. Communication latencies in our scenario
deteriorate only slightly when PNS is deactivated, as can
be seen in the lower half of Fig. 8. This can be explained
by the fact that (1) Proximity Routing is still active and
(2) messages are passed directly between sender and receiver
(thanks to Direct Publish) and communication partners are
socially connected, thus residing in each others Social Tables
and able to route messages between them in one hop. Without
PNS, the bandwidth consumption of our solution appears
stable with growing populations. The use of an active friend
device discovery mechanism leads to no significant bandwidth
overhead, while improving latencies and leading to a more
complete knowledge of a node’s friends in the overlay.

For the most promising parameter combination we sim-
ulated (Direct Publish with Social Tables and active friend
device discovery), we also evaluated how much the different
system components contribute to the total bandwidth. The
results of this evaluation, depicted in Fig. 9, show that actual
SODESSON messages are responsible for only a negligible
part of the overall bandwidth consumption in comparison
to the DHT component and the overhead produced at the
overlay routing layer. The DHT component is by far the

largest “bandwidth eater”, which is mostly attributed to the
maintenance traffic involved for assuring a sufficient number
of replicas for each dataset.

V. RELATED WORK

The desire for user-to-user communication in contrast to
pure information retrieval is as old as the Internet itself.
Communication applications like email, instant messenger and
popular modern OSNSs are tools to this end. However, classical
systems based on the client/server paradigm do not provide
a generic user-centric networking middleware that can be
used for developing arbitrary new applications and enables
the flexible service provision by user devices, while regarding
the user’s individual behavior.

The Unified Internet Architecture [9] (UIA) is a step towards
the latter goal, while also solving many of the problems found
in centralized architectures. However, UIA is a device-centric
system, with device addressing instead of user addressing and
no real consideration for the social element of communication.
Several decentralized OSN projects exist that are user-centric
in this respect, for example PeerSoN [6] or SuperNova [15].
Among other things, these proposals also demonstrate ways
of leveraging social context in decentralized systems. How-
ever, they focus almost exclusively on privacy and classical
OSN functionality. Recent work in the area of opportunistic
networking [12] [5] uses the social context to detect commu-
nities which are used to improve data dissemination. Neither
opportunistic networking nor the decentralized OSN proposals
mentioned before aim at providing a general-purpose com-
munication middleware based on the service provision by
powerful user devices.

The problem of communication locality in a user-centric
networking context was also not addressed in any of the
aforementioned works. Many contributions exist for improving
the locality qualities of overlay networks in general, resulting
for example in KBR protocols like Bamboo [14] However,
according to our knowledge, no approaches have yet been
proposed for improving the locality properties of overlay-
based publish/subscribe systems or similar systems. Finally,
no suggestions for supporting offline delivery in an overlay-
based publish/subscribe system are known to the authors.

VI. SUMMARY AND FUTURE WORK

Online social networks and socially motivated communica-
tion in general is as much a modern trend as the ubiquity and
growing capability of mobile consumer devices like smart-
phones. In this paper, we presented a novel overlay-based
publish/subscribe system enabling the deployment of generic
user-centric networking applications and services in a fully
decentralized manner by user devices. Our approach supports
the persistence and delayed delivery of messages to currently
unavailable recipients (offline delivery) and achieves a close
to optimal locality of communication links, as simulation
results show. Our hybrid overlay approach, which combines a
structured overlay with a social routing overlay, significantly
helps to reduce latency and keep traffic local.

In the future, we plan to focus on the privacy and security
aspects of our design. Additionally, we envision to automati-
cally learn from users’ behavior to improve the availability of
data and reduce communication costs.

REFERENCES

[1] D. Avrahami and S. E. Hudson, “Communication characteristics of
instant messaging: effects and predictions of interpersonal relationships,”
in Proceedings of the 2006 20th anniversary conference on Computer
supported cooperative work, ser. CSCW ’06, 2006, pp. 505-514.

[2] I. Baumgart and F. Hartmann, “Towards secure user-centric networking:
Service-oriented and decentralized social networks,” in Proceedings of
the 5th IEEE Conference on Self-Adaptive and Self-Organizing Systems
Workshops (SASOW), Ann Arbor, Michigan, USA, Oct. 2011, pp. 3-8.

[3] 1. Baumgart, B. Heep, and S. Krause, “OverSim: A flexible overlay
network simulation framework,” in Proceedings of 10th IEEE Global
Internet Symposium (GI "07) in conjunction with IEEE INFOCOM 2007,
Anchorage, AK, USA, May 2007, pp. 79-84.

[4] 1. Baumgart and S. Mies, “S/Kademlia: A Practicable Approach Towards
Secure Key-Based Routing,” in Proceedings of the 13th International
Conference on Parallel and Distributed Systems (ICPADS ’07), Dec.
2007.

[5] C. Boldrini, M. Conti, and A. Passarella, “ContentPlace,” in Proceed-
ings of the 1l1th international symposium on Modeling, analysis and
simulation of wireless and mobile systems - MSWiM 08, 2008, p. 203.

[6] S. Buchegger, D. Schioberg, L.-H. Vu, and A. Datta, “Peerson: P2P
social networking: early experiences and insights,” in Proceedings of
the Second ACM EuroSys Workshop on Social Network Systems, ser.
SNS ’09, 2009, pp. 46-52.

[7] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, “Scribe: a
large-scale and decentralized application-level multicast infrastructure,”
Selected Areas in Communications, IEEE Journal on, vol. 20, no. 8, pp.
1489 — 1499, Oct. 2002.

[8] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: a decentralized
network coordinate system,” in Proceedings of the 2004 conference on
Applications, technologies, architectures, and protocols for computer
communications, ser. SIGCOMM ’04, 2004, pp. 15-26.

[9] B. A. Ford, “Uia: A global connectivity architecture for mobile personal
devices,” Ph.D. dissertation, Massachusetts Institute of Technology,
Boston, MA, USA, Sep. 2008.

[10] B. Heep, “R/Kademlia: Recursive and Topology-aware Overlay Rout-
ing,” in Proceedings of 2010 Australasian Telecommunication Networks
and Applications Conference (ATNAC 2010), Auckland, New Zealand,
Nov. 2010, pp. 113-118.

[11] B. Huffaker, D. Plummer, D. Moore, and K. Clafty, “Topology discovery
by active probing,” in Symposium on Applications and the Internet
(SAINT). Nara, Japan: SAINT, Jan 2002, pp. 90-96.

[12] P. Hui, J. Crowcroft, and E. Yoneki, “BUBBLE Rap: Social-Based
Forwarding in Delay-Tolerant Networks,” IEEE Transactions on Mobile
Computing, vol. 10, no. 11, pp. 1576-1589, 2011.

[13] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer infor-
mation system based on the xor metric,” in Revised Papers from the
First International Workshop on Peer-to-Peer Systems, ser. IPTPS *01.
London, UK: Springer-Verlag, 2002, pp. 53-65.

[14] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling churn in a
DHT,” in ATEC ’04: Proceedings of the annual conference on USENIX
Annual Technical Conference, Boston, MA, USA, Jun./Jul. 27-2, 2004,
pp- 127-140.

[15] R. Sharma and A. Datta, “Supernova: Super-peers based architecture for
decentralized online social networks,” in Communication Systems and
Networks (COMSNETS), 2012 Fourth International Conference on, jan.
2012, pp. 1-10.

[16] M. Steiner, T. En Najjary, and E. W. Biersack, “Long term study of peer
behavior in the KAD DHT,” IEEE/ACM Transactions on Networking,
vol. 17, no. 5, Dec. 2009.

[17] 1. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana, “Internet
indirection infrastructure,” in Proceedings of the 2002 conference on
Applications, technologies, architectures, and protocols for computer
communications, ser. SIGCOMM ’02, 2002, pp. 73-86.

[18] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow, “The anatomy of
the facebook social graph,” CoRR, vol. abs/1111.4503, 2011.

[19] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’
networks,” Nature, vol. 393, pp. 440—442, Jun. 1998.

