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Zusammenfassung

Mobile Geräte erfreuen sich in den letzten Jahren einer immer höheren Beliebtheit
und finden eine weite Verbreitung unter Endnutzern. Gleichzeitig lässt sich eine
enorme Entwicklung in ihren Rechen- und Kommunikationsleistungen verzeichnen.
Etablierte Kommunikationsparadigmen wissen diese neu verfügbaren Kapazitäten
allerdings nicht zu nutzen und konzentrieren weiterhin, innerhalb des Cloud Com-
puting sogar in noch höherem Maße, den gesamten Kommunikations- und Verwal-
tungsaufwand verteilter Anwendungen auf wenige zentral kontrollierte Server. Dies
führt vor allem auch zu einer aktiven Bedrohung der Privatsphäre der Nutzer, was
sich immer wieder in öffentlichen Diskussionen widerspiegelt.

Ausgehend von dieser Problematik wurde das SODESSON -Projekt ins Leben geru-
fen. SODESSON steht für Service-oriented and decentralized social networks, also
die Erforschung von dienstorientierten dezentralen Computer-Netzwerken die auf
sozialen Beziehungen zwischen Nutzern aufbauen. Dabei ist das Ziel nicht die Rep-
likation von Funktionen wie sie aus populären Online-Kontaktnetzwerken (wie z.B.
Facebook) bekannt sind, sondern die Entwicklung einer generischen Middleware, die
die Realisierung von sicheren, nutzerorientierten Applikationen erlaubt.

Das Ziel dieser Arbeit war es, verschiedene Ansätze zur Verwirklichung einer solchen
Middleware zu erforschen und dabei insbesondere auf die Lokalität der Kommunika-
tion und die Beachtung und Ausnutzung sozialer Verbindungen zwischen Nutzern
einzugehen. Konkret wurde zunächst eine Kategorisierung verschiedener Kommuni-
kationsparadigmen unternommen. Darauf aufbauend wurden mögliche Lösungsan-
sätze im Detail diskutiert und verglichen. Als Ergebnis dieser Analyse wurde ein
Ansatz, der auf strukturierten Overlay-Netzen aufbaut, ausgewählt und einer wei-
teren, vertieften Analyse unterzogen. Schließlich diente er als Grundlage für den
Entwurf eines Kommunikations- und Datenspeicherungssystems für SODESSON.

Zentrale Ergebnisse des Entwurfs sind unter anderem ein dezentrales System zur
Vermittlung von Nachrichten (basierend auf dem Publish/Subscribe-Paradigma), das
auch dann korrekt funktioniert, wenn der Empfänger zum Zeitpunkt der Sendung
nicht verfügbar ist. In diesen Fällen wird die Nachricht ausgeliefert, sobald er
wieder verfügbar ist, jedoch unabhängig von der Verfügbarkeit des ursprünglichen
Absenders. Weiterhin wurden Konzepte für die Verbesserung der Lokalitätseigen-
schaften des Kommunikationssystems entwickelt. Außerdem wurde das Overlay-
Protokoll R/Kademlia um eine Datenstruktur für befreundete Geräte erweitert und
Ansätze zur Füllung dieser sozialen Nachbarschaftstabelle vorgeschlagen. Das ge-
wonnene Wissen über die Identitäten befreundeter Geräte eröffnet zahlreiche Mög-
lichkeiten zur Nutzung sozialer Verbindungen durch die SODESSON Middleware,
z.B. zur Verbesserung der Datenspeicherung und des Routings.
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Im Anschluss an den Entwurf wurde, basierend auf den entwickelten Konzepten,
ein Prototyp für die Overlay-Simulationsumgebung OverSim implementiert. Dabei
musste OverSim zunächst für die Simulation von nutzerorientierten Kommunika-
tionsszenarien angepasst werden, in dem u.a. Nutzer-Entitäten und ein Generator
für soziale Graphen hinzugefügt wurden. Außerdem wurde eine Testapplikation für
die SODESSON-Middleware entwickelt, die darauf zielt die Anforderungen und das
Nutzungsverhalten realer Instant-Messaging-Programme nachzubilden.

Mit Hilfe des implementierten Prototyps wurde schließlich eine umfassende Reihe
von Simulationen durchgeführt um die Funktionalität und Leistung der Lösung zu
prüfen. Dabei wurden zunächst geeignete Parameterkombinationen zur Maximie-
rung der Systemleistung ermittelt. Simulationsergebnisse zeigten daraufhin, dass die
entwickelten Konzepte in der Lage sind in realitätsnahen Netzen ein zuverlässiges
Substrat für nutzerorientierte Kommunikation bereitzustellen. Sowohl die gemes-
senen Kommunikationslatenzen als auch der Bandbreitenbedarf der Lösung erwiesen
sich als sehr zufriedenstellend.
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1. Introduction

In recent years, mobile devices like smartphones and notebook computers have grown
both more powerful and significantly more popular. The German Association for
Information Technology BITKOM, for example, estimated that in the beginning of
2012, every third person in Germany owned a smartphone (34%) [31]. In the under
30 demographic, it was every second person (51%). In terms of processing power and
communication capabilities, modern phones easily surpass state-of-the-art desktop
computers that were common 15 years ago, while modern laptops are often in the
same performance category as current desktop systems. Ubiquitous and affordable
communication technologies enable mobile systems to exchange data independently
of their location, at paces comparable to those of static systems. On top of all that,
the performance and functionality increase of portable devices is still an ongoing
trend, with more powerful devices entering the market every year.

Despite their elevated capabilities however, mobile devices play a rather passive role
in most of today’s communication applications. Even worse, with the popularization
of cloud computing, they are more and more reduced to dumb terminals for services
offered by third-parties. Instead of communicating directly with locally available
devices, they form costly and unreliable long-distance connections with dedicated
servers and relay their communication via them. Devices are usually not able to
communicate with each other without global Internet connectivity, even if they
are within wireless range of each another or connected to the same local network.
The abundant resources that modern consumer devices have - be it idle processing
power, an Internet connection or external pieces of hardware like printers - could
also be shared locally to befriended users and their devices. This is also not reflected
sufficiently in current communication paradigms.

In addition to the spreading of powerful mobile devices, a different but related trend
surfaces today. Namely, the significant popularization of online social networking
(OSN) platforms like Facebook and Google+. Like with many popular communi-
cation applications, those services are also based on a centralized design, i.e. the
communication between users always passes through the respective platforms and
the servers of their operators. In existing OSNs, the users’ data is thus managed
centrally by the organizations running the service. The strong privacy concerns this
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raises are often the topic of public discussions. Legal regulations are implemented
to address some of the concerns and companies make self commitments to the sen-
sitive handling of personal data. However, the question arises whether a technical
solution to those problems might not be more appropriate, by constructing social
communication systems that are inherently privacy-friendly.

For researching the possibilities for creating such systems, while also making use
of the resources available in modern mobile devices and enforcing a higher locality
of traffic, the SODESSON project was started [6]. SODESSON stands for Service-
oriented and decentralized social networks. Its core aim, however, is not the repli-
cation of standard OSN functionality as found in Facebook or Google+. Rather
than that, a generic middleware is envisioned that leverages social information and
provides a user based communication abstraction. Application developers are to
be alleviated from worrying about low-level tasks like the discovery of devices, the
delivery of messages or the identification and authentication of users. Such a net-
working approach, that is based around the addressing of users and the direct service
provision by user devices, will be referred to as user-centric networking from now on.
Based on the SODESSON middleware, the rapid development of secure, user-centric
applications should be made possible.

1.1 Goals of the Thesis

This thesis deals with the exploration of approaches for an efficient storage and com-
munication infrastructure for the SODESSON middleware, providing a functional
substrate for user-centric networking. A thorough analysis of the solution space will
be performed, taking the design goals of SODESSON into account. Characteristic
properties of the user-centric networking scenario, like the existence of social con-
nections between users and the frequent locality of inter-user communication, will
be noted and discussed in the context of the considered approaches.

Based on the performed analysis, one general approach will be examined in greater
detail. Specific concepts and mechanisms will be developed and the proposed designs
will be implemented in a prototype. Additionally, a simulation environment for
user-centric networking will be set up, as well as a test application for SODESSON.
Using these tools, the feasibility and performance of the presented solutions will be
evaluated.

1.2 Structure of the Thesis

Firstly, in Chapter 2, a few basic concepts and projects will be introduced, the
knowledge of which is helpful for the understanding of the presented work. Following
that, a first analysis of the problem and the possible solution space will be conducted
in Chapter 3. Based on this preliminary analysis, a promising direction will be chosen
for further study. The deeper discussion of the chosen approach will be conducted
in Chapter 4, followed by the design of a specific proposal based on that approach,
in Chapter 5. The implementation of a prototype of the design will be described in
Chapter 6. In Chapter 7, simulation results obtained with this prototype will then
be discussed and an evaluation of the proposed solutions will be conducted based
on those results. Lastly, a summary of the work in this thesis and a collection of
suggestions for future efforts will be presented in Chapter 8.



2. Background and Related Work

In this chapter, concepts and ideas will be discussed that form the basis for the pre-
sented work. Firstly, the SODESSON project will be introduced formally, followed
by the introduction of the publish/subscribe pattern of communication and its pro-
posed usage in the SODESSON middleware. Then, types of communication systems
will be listed, culminating in a description of decentralized overlay networks. The
OverSim simulation framework, used for implementing and evaluating the proposed
designs, will be introduced after that. Lastly, similar and related work to this thesis
will be listed and discussed shortly.

2.1 SODESSON

The SODESSON (Service-oriented and decentralized social networks) research pro-
ject deals with the exploration of user-centric networking techniques. Its main goal
is the development of a generic communication middleware for user-centric network-
ing. User-centric in this context implies, that users and application developers are
confronted only with the addressing of users and do not have to deal with issues
related to the discovery of specific devices and the formation of communication
links between them. Also, user devices are able to provide services to other devices
directly and are expected to assume a central role for the realization of network-
ing functionality. Some important assumptions made by the SODESSON project
include:

• Users communicate predominantly with people they know, i.e. with people
from their social network.

• Users have multiple devices at their disposal and user-centric applications
could be running on all of them simultaneously.

• Devices are powerful and capable of providing services themselves instead of
acting only as clients.

Based on those assumptions, the desire is to develop a middleware that is secure
and privacy preserving, that is aware of the social context between communication
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partners and that allows the provision of services by user devices. Locality and di-
rectness of communication are important as well and the middleware’s independence
from the availability of global Internet connectivity is desirable. These requirements
will be elaborated and discussed further in subsequent chapters.

2.2 Publish/Subscribe
In the publish/subscribe communication pattern, one set of entities (the subscribers)
first subscribes to a number of specific topics. Publishers send (publish) data to
those topics. The publish/subscribe system then replicates and disseminates their
messages to the respective subscribers. In a publish/subscribe based news service
for example, users interested in politics might subscribe to the politics topic, while
journalists writing about political matters would publish their articles to it. Data
published to the politics topic gets disseminated to all users that subscribed to it,
thus reaching the interested readers. As an important detail in the formal definition
of the publish/subscribe pattern, publishers are not directly aware of the receivers
of their messages and subscribers do not necessarily have to know the identity of the
publishers. Publish/subscribe mechanisms thus create a layer of indirection between
senders and receivers, making them oblivious of each other.

In the SODESSON middleware, the publish/subscribe pattern is envisioned as the
base for a generic user-centric networking API. The goal is to provide a unified in-
terface that abstracts from details related to the underlying network and enables the
dynamic provision of services by individual user devices. Figure 2.1 demonstrates a
proposed realization of this idea. In the presented approach, which is also suggested
in current SODESSON drafts [6], services are represented as topics. Each device
offering a particular service subscribes to the topic that corresponds to that service.
Requests related to the service can then be published to this topic, reaching the ser-
vice providers. Services can also be tied to a specific user, which is noted accordingly
in topic titles. In the discussed context, typical user-centric applications like instant
messaging are also understood as a form of service, e.g. an instant messaging ser-
vice. To make a specific example, in an instant messaging application, one of Bob’s
devices could register to the topic InstantMessaging@Bob. When another user, e.g.
Alice, wants to communicate with Bob via instant messenger, she can make a pub-
lish to that topic and thus reach all of his instant messaging-enabled devices without
needing to discover or address them individually. Publish/subscribe topics act as
rendezvous points for facilitating the mutual discovery of communication partners.

A deeper discussion of SODESSON’s publish/subscribe based communication inter-
face will also be conducted in later parts of this thesis.

2.3 Overlay Networks
Overlay networks have previously been suggested for the use with SODESSON (in
[6]) and are also relevant in the context of this thesis. Thus, a short introduction to
this concept will be performed here. First, different basic types of communication
setups will be listed, giving an idea about overlay systems through their comparison
with other approaches. Following that, some basic overlay-related termini will be
introduced. Lastly, the two general categories of overlay networks will be discussed
- structured and unstructured ones, focusing also on a popular storage system based
on structured overlays.
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Figure 2.1: The publish/subscribe API envisioned for SODESSON.

2.3.1 Types of Communication Systems

In the following, several basic approaches for realizing distributed communication
applications will be introduced.

2.3.1.1 Centralized Systems

In classical centralized systems, one dedicated node (the server) is at the center of
all communication processes in a distributed application. Typically, the server also
provides most of the resources in the system, e.g. computing power and storage
space. Other participants (the clients) depend on it to provide them with data
and relay their messages to other users. No direct client-client communication is
possible. This is also referred to as the client-server model of communication.

It should be noted that most client-server systems used today follow a more relaxed
responsibility distribution than the rigid one-to-many scheme presented above. Re-
sponsibilities are still concentrated on the serving side, but the number of servers
is variable, allowing applications to achieve some degree of failure resilience and
scalability, properties that are not inherent to centralized designs.

2.3.1.2 Hybrid Systems

Hybrid architectures share traits of both centralized and decentralized systems. This
is realized by shifting more responsibilities on to clients, e.g. allowing them to form
connections between each other, while still not eliminating the client/server separa-
tion entirely. The role of the server in such applications often becomes this of the
coordinator, providing only little service himself but aiding clients with the discovery
of relevant peers. A prominent example is the swarm-downloading system Bittor-
rent1. In its original version, dedicated servers (trackers) are used for connecting
peers to the downloading swarm they are interested in. The actual data transfer is
then performed in a decentralized manner between the clients in a swarm. However,

1http://www.bittorrent.org/

http://www.bittorrent.org/
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newer versions of the Bittorrent protocol however also support a trackerless mode
of operation which is completely decentralized.

2.3.1.3 Decentralized Systems, Overlay Networks

In a completely decentralized system, no form of central coordination instance exists.
All functionality is provided by nodes with equal responsibilities, hence the popular
name peer-to-peer network. Nodes in a decentralized system can act both as clients
and as servers, obtaining and providing services at the same time. Each node main-
tains connections to a few other peers, its neighbors. The resulting network is what
keeps all nodes together and maintains the system’s functionality.

Often, decentralized networks are formed by creating virtual connections between
nodes in an existent network, e.g. the Internet. In these cases, the resulting virtual
network is called an overlay network. The real network on top of which it is spanned
is often referred to as the underlay network of that overlay. Overlay approaches can
be divided into two main types - unstructured and structured ones - that will be
discussed in the remainder of this section. Before that however, some basic overlay-
related terminology will be elaborated first.

2.3.2 Overlay Network Terminology

The degree by which the topology of the underlying network influences the formation
of links in the overlay, e.g. the mapping degree of the overlay to the underlying
network, varies with different approaches. A common measure for this degree is the
stretch between the length of an average overlay path between two nodes and the
corresponding direct path between the same nodes in the underlay. Clearly, overlay
paths are always at least as long as the best equivalent path in the underlying
network.

Another important term in the context of overlay networks research is the concept
of churn. Churn is said to exist in a scenario, when the node population forming the
overlay is not static. Specifically, there is constant leaving and entering of nodes,
either because of node failures and recoveries or due to normal user behavior (e.g.
switching their devices on and off). The existence of churn poses a challenge to
decentralized systems and measures for dealing with it are integrated into many
popular overlay protocols and applications.

2.3.3 Unstructured Overlay Networks

Unstructured overlays are the earliest form of overlay networks. They are used,
for example, in early file sharing protocols like Gnutella2. As their name suggests,
they do not aim at realizing a particular network structure when forming overlay
links and instead support a more flexible selection of overlay neighbors. Common
techniques used for discovering nodes, datasets or services in a unstructured overlay
include:

• Flooding - a node’s query is duplicated and sent to all of the node’s neighbors,
who in turn forward it to all of their neighbors etc. Mechanisms exist for

2http://rfc-gnutella.sourceforge.net/

http://rfc-gnutella.sourceforge.net/
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avoiding loops and multiple visits of the same node. Flooding queries are
often also limited in scope, e.g. they are not forwarded anymore after having
been forwarded a certain amount of times.

• Gossiping - knowledge gets disseminated in the network a-priori, so that no
additional queries are necessary. Specifically, whenever a node generates a
piece of information that other nodes might be interested in, it passes this
information to a number of it’s neighbors. They, in turn, pass it to some of their
own neighbors and so on, until a significant portion of the node populations
has learned about it.

• Random walks - similar to flooding, but queries get forwarded to only one
random neighbor. The choice of neighbors can be biased by additional metrics
and context-related information.

Often, combinations between those techniques are found. The main disadvantage
of the presented mechanisms is their linear complexity. With n being the number
of nodes in the overlay, O(n) nodes need to be visited in all approaches in order
to achieve correct results. For this reason, unstructured overlays in general do not
scale well.

2.3.4 Structured Overlay Networks

Structured overlay approaches feature a dedicated logic that influences the formation
of overlay links and the routing of queries. Specifically, the network is constructed
reflecting a previously chosen topology structure, like a ring or a hypercube. Each
overlay node is assigned an overlay addresses of a given length, also referred to as
key or node identifier (node ID). The numerical space from which those addresses
are taken is called the key space or identifier space (ID space).

The ID of a node determines its position in the overlay geometry. In a purely ring-
based geometry for example, two neighbors are also the successors of one another in
the identifier space, i.e. their overlay IDs are the numerical successors of each other
in the set of all currently existing node IDs. The peers closest to a node in ID space
are also referred to as that node’s siblings. The set of neighbors of a node (the peers
with which overlay connections exist) is called the routing table of that node.

Queries in the overlay are always routed towards some value in ID space, the desti-
nation key. They are forwarded from node to node based on this key, by selecting
neighbors that are closest to it in ID space, using a predefined routing metric. The
overlay structure is usually chosen in such a way, that the distance to the destina-
tion is not only guaranteed to decrease in each step, but is also likely do decrease
by half or more. Thus, routing paths in structured overlays have an average length
of O(log n) hops with n being the number of nodes in the overlay. This logarithmic
routing complexity is a significant improvement to unstructured approaches, where
O(n) nodes have to be contacted for guaranteeing correct results. It is also one
of the main advantages in using structured overlays in comparison to unstructured
approaches.

The routing of overlay messages as described so far is also referred to as key-based
routing (KBR). Hence, the term KBR overlays will be used interchangeably with
structured overlay networks for the remainder of this thesis.



8 2. Background and Related Work

2.3.5 Distributed Hash Tables

By far the most popular application for structured overlays is their use for powering
a distributed hash table (DHT). A DHT is a decentralized key-value storage system,
realized by the nodes in the KBR overlay. DHT keys have the same length as
the IDs in the underlying KBR overlay, i.e. both components share the same key
space. Every KBR node becomes responsible for a portion of this key space, namely
all values for which it is the closest node in the overlay in terms of its node ID.
DHT requests for a specific key get routed through the overlay and arrive at this
responsible node (through standard KBR logic). Data can then be stored on it
using a put call, or retrieved with a get request. For dealing with churn, DHT-
enabled nodes create replicas of all datasets they are responsible for and distribute
them to other peers. Most commonly, sibling replication is employed, i.e. data is
replicated and distributed to the overlay siblings of responsible nodes. By using
replication, datasets are not lost whenever individual nodes leave the overlay. For
all basic DHT mechanisms sketched so far, many suggestions for modifications and
alternative approaches exist in the literature.

In different publications, the name DHT can be found do denote anything from a
simple KBR overlay to the combination of a KBR overlay with a key-value storage
mechanism as described above. In this thesis however, and in concordance to [16],
the term DHT will be used only for denoting the storage and replication component
described above. Mechanisms related to routing and the formation of a structured
overlay are, per this definition, encapsulated in the KBR component, thus forming
a clear separation between the two subsystems.

2.4 OverSim Simulation Framework
OverSim [7] is a framework for developing and testing overlay designs. It is based
on OMNeT++ [48], a popular discrete event network simulation environment. Like
OMNeT++, OverSim enables the creation of complex simulation models by combin-
ing individual modules. Modules can be anything from a protocol implementation
on an individual host to an abstraction of a whole network, with the composition of
modules being very common. OMNeT++ and OverSim modules are defined in the
NED language and their functionality is implemented in C++. The main method
of intermodule communication is through the passing of message objects, although
the remote calling of module functions is possible as well.

OverSim enhances OMNeT++ by a number of supportive modules for designing
Overlay simulations. Additionally, it contains readily usable implementations of
many popular overlay protocols and applications, including various KBR protocols
and a DHT application. OverSim features a layered architecture together with com-
mon APIs on layer boundaries, to ensure the interchangeability and interoperability
of individual components. The KBR component can be rotated freely without chang-
ing higher-layer modules, for example. This modularity of design is one of OverSim’s
greatest advantages. However, the framework’s flexibility is not at the expense of its
scalability and simulation performance. OverSim is capable of simulating networks
with hundreds of thousands of nodes. A more thorough introduction to OverSim’s
architecture and its main components will be made in Chapter 6.

Figure 2.2 shows a screenshot of OverSim in action, demonstrating the framework’s
graphical user interface.
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Figure 2.2: Screenshot of OverSim showing the visualization of an overlay topology
under churn [7].

2.5 Related Work

In the widest sense, the idea of user-centric networking is as old as the Internet itself.
Communication applications like email and instant messenger or even popular mod-
ern OSNs can all be described as user-centric. However, classical systems based on
the client/server paradigm have a set of inherent problems like their bad scalability
and the privacy concerns they rise. Furthermore, none of them provides a generic
user-centric networking middleware that can be used for developing arbitrary new
applications and enables the flexible service provision by user devices.

Approaches like the Unified Internet Architecture [18] (UIA) are closer to the lat-
ter goal, while also solving many of the problems found in centralized architectures.
However, UIA is actually a device-centric system, with device instead of user address-
ing. Several decentralized OSN projects exist that are user-centric in this respect,
for example [10, 14]. Amongst other things, those proposals also demonstrate the
integration of social information into various distributed systems. However, they fo-
cus almost exclusively on privacy and the replication of classical OSN functionality.
Specifically, they do not at aim at offering a generic communication middleware or
enabling the flexible provision of services by powerful user devices.

The locality of communication was also not addressed yet in the context of user-
centric networking. However, many contributions exist for improving the locality
qualities of decentralized systems in general. Out of those, the concept of hierarchical
structured overlays appears promising (e.g. as in [1, 19, 21]).

Unsurprisingly, the most strongly related work to this thesis is the previous work
done in the SODESSON project, for example the ideas outlined in [6]. Currently
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however, SODESSONs design is still very incomplete. Important details, like the
choice of a storage system for application data or the mechanisms for realizing delay
tolerant messaging, have not yet been specified sufficiently. Also, neither the locality
of communication nor the prospects of leveraging social information for improving
aspects of the system have yet been discussed in the context of SODESSON.



3. Analysis

The core aim of this thesis is to explore different approaches for an efficient storage
and communication infrastructure for the SODESSON middleware. The resulting
architectures should provide a basic set of functions to internal SODESSON compo-
nents and applications build on top of SODESSON. They should provide persistent
data storage mechanisms and a publish/subscribe interface as described in the orig-
inal SODESSON paper [6]. In the end, they should be able to form the foundation
for a wide range of different user-centric networking applications.

In developing a system like this, characteristic properties of the user-centric net-
working scenario must be taken into account. This includes the existence of social
relationships between communication partners which can be leveraged to improve
the performance, stability and security of an approach. This also includes the pre-
dominant locality of user-centric interactions, as socially connected people are often
in physical proximity to each other as well and many communication processes be-
tween them are only of local interest. Solutions should thus be designed in a way
that is locality-aware and avoids the triangular routing found in most centralized
communication architectures today. Ideally, nodes in the same local network should
be able to communicate with each other even when no global Internet connectivity
is available.

Proposed solutions must also be aware of other requirements to the SODESSON
middleware that are not in the central focus of this thesis. This include properties
of the usage scenario like the heterogeneity of participating devices and the desire
to adapt to different network topologies, like ad hoc networks. This also includes
security and privacy related constraints. Those requirements should be realizable
on top of the resulting systems and thus be kept in mind. Some common practical
challenges however, like bootstrapping and NAT traversal, will be ignored in most
parts of this work for the sake of simplicity.

3.1 Requirements

This section serves the further specification of the requirements an efficient user-
centric networking infrastructure needs to fulfill.
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3.1.1 Design Constraints

The architecture that is being developed here will form the backbone of the SODES-
SON user-centric networking middleware and will be determent to many character-
istics of the final system. Thus, it must be assured that SODESSON’s basic design
constrains can be met when building on top of the solutions developed in this thesis.
This includes issues like reliability - SODESSON should be resilient to connectiv-
ity problems and node failures - and scalability - being able to handle worldwide
networks with large numbers of users. In order to be deployed on a large scale,
the solution should also aim at minimizing its impact on communication latency,
bandwidth and the computational load in participating devices.

Amongst other things, the SODESSON middleware is also designed with a strong
emphasis on security and privacy. While not a central focus of this thesis, the
compatibility of the resulting solutions with a public key security infrastructure as
mentioned in the original SODESSON paper [6] should thus be kept in mind. The
same holds for privacy concerns, as a communication and storage solution that is
inherently privacy-averse would not be a suitable basis for SODESSON.

3.1.2 Core Functionality

The core functionality required of the presented solutions reflects the basic design
goals of the SODESSON middleware, namely the provision of a substrate for user-
centric networking and communication. This implies the need for a per-user ad-
dressing scheme that alleviates application developers from issues like the selection
of an appropriate device to communicate with. It is the responsibility of the solu-
tions developed in this thesis to keep track of a user’s devices and to make decisions
about which device to contact. This is non-trivial as users might be logged on to
several devices simultaneously.

In addition to user addressing and device selection, the SODESSON middleware
aims at providing a set of communication and storage services for applications. The
SODESSON paper [6] identifies three general categories of such services:

Direct Participating devices form a direct connection between each other through
which data is being exchanged. This might be appropriate for applications
like file sharing where large amounts of data are being transferred.

Persistent Data gets stored by the SODESSON middleware and is permanently
available, even if the user’s devices are offline. A persistent storage like this
can be used for storing photo albums or profile pages like in more traditional
online social networks.

Hybrid Direct communication with a possible fall back into persistent storage when
target devices become unavailable. A prominent example here are instant mes-
saging applications in which messages sent to an unavailable communication
partner can be persisted for later delivery, even if the original sender becomes
unavailable himself.

The concrete realization of those services is transparent to the actual applications.
Decisions like routing or when to fall back into persistent storage are responsibilities



3.1. Requirements 13

of the SODESSON middleware and, more specifically, of the communication and
storage infrastructure that is being developed here. The presented approaches must
also be aware of underlay-related issues like addressing, reachability and connection
maintenance.

In SODESSON’s current design, a great part of this transparency is achieved through
the provision of a publish/subscribe interface. It is foreseen that the publish/sub-
scribe paradigm will be a sufficient base for the development of sophisticated user-
centric applications. In this respect, the realization of efficient publish/subscribe
functionality in a user-centric context is one of the main concerns of this thesis and
the solutions presented.

In addition to modeling user-centric communication, the publish/subscribe pattern
can also be used for interacting with a persistent storage service. Interested peers
could, for example, subscribe to a resource instead of just retrieving it once. Sub-
scribed peers would then receive update notifications, enabling them to maintain
a fresh local version of the resource without polling it constantly. Still, an inter-
face that is tailored specifically to the data storage/data retrieval scenario might be
more appropriate for internal use within SODESSON. Developed solutions should
thus provide specialized data storage functions as well, e.g. a key-based put/get
interface similar to the one used in hash tables.

To sum up, following key challenges are left to be addressed by the proposed com-
munication and storage infrastructures:

• Defining a user-centric addressing scheme with several devices per user. Mech-
anisms for selecting the best device to communicate with should be supported.

• Providing a persistent data storage system independent of the availability of
particular devices.

• Providing a communication abstraction based around the publish/subscribe
paradigm that is able to persistently store data for later delivery if a commu-
nication partner is unavailable.

3.1.3 Social Context Leverage

The availability of social context information is a distinctive property of the SODES-
SON usage scenario. It is expected that most, if not all, of the interactions over the
SODESSON middleware will be based on social relationships, i.e. will be between
users that are connected socially. It is furthermore likely that users will be willing
to assist their social contacts by helping them establish communication links or by
storing data for them. In decentralized approaches, social information can be used
for optimizing routing decisions. Trusted nodes can be preferred when forwarding
messages, increasing the chance that a query will yield correct results, which im-
proves the overall robustness of the system [42]. Social links might even be leveraged
for alleviating the bootstrap problem in such approaches. The information from the
social graph is thus a promising platform for optimizing communication and storage
processes in SODESSON. The solutions developed in this thesis should be aware of
this and aim at incorporating social information into their design.
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3.1.4 Locality Awareness

Locality plays an important role in SODESSON as well, as socially related users are
often also in proximity to each other1. This proximity can be leveraged for making
communications processes between them more efficient. If two users reside in the
same subnetwork for example, it is not very economic to route the traffic between
them via a far away server, as is the case with many centralized applications today.
Likewise, it is also more desirable to store data on nodes that are topologically close
to both the data source and its expected receivers. In a similar way, locality informa-
tion could also be leveraged when implementing caching schemes, so that interesting
pieces of data can be copied and kept locally. Finally, focusing communication and
storage to a local scope can also improve SODESSON’s performance when there
is no stable Internet connectivity. Ideally, SODESSON applications should be able
to function without any global connectivity at all. With this possibilities in mind,
it is desirable for the solutions developed in this thesis to be aware of locality and
leverage it appropriately.

3.2 Possible Approaches

This section discusses possible approaches to a communication and storage infras-
tructure for user-centric networking. Only the basic characteristics of each approach
will be evaluated. The most interesting approach will be analyzed and developed
further in subsequent chapters.

The possible approaches can be divided into classes as depicted in Figure 3.1. The
structure of this section is based around this classification.

3.2.1 Centralized Approaches

The client-server paradigm is at the heart of todays Internet and the foundation for
many popular user-centric communication applications. It might thus be applicable
to the scenario of this thesis as well - the development of a generic middleware for
user-centric communication. A great part of SODESSONs core functionality has
actually been implemented in a centralized manner already. Online social networks
like Facebook and Google+, for example, need to provide very similar functionality
to their internal components as the SODESSON middleware to SODESSON applica-
tions. Systems like this show that high performance can be achieved when following
a client/server approach. They also achieve a high degree of fault tolerance and
scalability, handling hundreds of millions of users per day2

3.2.1.1 Scalability and Fault Tolerance

However, this degree of scalability and fault tolerance comes at a cost. Since most
resources are provided by a set of dedicated servers, the size of the user base is
restricted by the amount of available servers and their combined bandwidth, storage

1The influence of geographic distance on friendship has been identified and discussed on several
occasions, most recently in [47].

2In May 2011 for example, the popular OSN Facebook counted 721 Million active users, i.e.
users that logged in at least once in a 28 day period. On average, those users logged into the site
roughly once every 4 days [47].
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Figure 3.1: Possible approaches to a communication and storage infrastructure for
user-centric networking

and processing capacities. This introduces the need for large server farms that are
expensive and difficult to maintain. Data centers are also very energy consuming,
leading to a negative ecological impact. The growth of the server set introduces
challenges that are very familiar to the challenges of decentralized systems, like
the dynamic adaptation to node failures and the maintenance of data consistency.
However, client/server applications are still significantly more prone to node failures
and denial-of-service (DoS ) attacks than architectures with a more equal distribution
of responsibilities. A problem in a few critical servers or infrastructure components
can lead to a severe functionality decline for the whole system. For the same reasons,
centralized systems are also prone to censorship, as connections to key servers can
easily be blocked by ISPs.

3.2.1.2 Privacy

Another shortcoming of centralized architectures is the issue of ensuring user pri-
vacy. All communication paths in the client-server model need to pass through a
centralized server which is, in most cases, operated by a third party. This poten-
tially untrusted third party (the server operator) finds itself in a position where it
can intercept and read sensitive user data. Clearly, this is highly undesirable. User
privacy is usually protected through laws, usage agreements and privacy policies.
However, legal rules can be broken on malicious intent and some of the agreements
might even contain hidden loopholes inconceivable to the average user. Addition-
ally, this form of security does not protect against unintentional information leaks,
where client data may become compromised due to failures or security breaches on
the serving side. Government agencies can also, under certain conditions, override
legal obligations and request the release of sensitive information about particular
users. While this might be desirable in some cases, it gives oppressive governments
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a possibility for spying on its population and is thus, in general, an undesirable effect
in the context of maintaining democratic societies.

A possible technical solution to the privacy problem is the protection of sensitive
data through means of encryption. For example, messages and data can be secured
through asymmetric cryptography, similar to the use of PGP in email. However, in
this approach only the content of a message can be protected - meta information
needed for the correct delivery (e.g. information about the sender and receiver) needs
to remain visible to the server. The server operator can thus still make out who
is participating in a specific communication processes, i.e. who communicates with
whom. Additionally, the solution is only feasible when the receivers of a message are
known in advance (as it needs to be encrypted with the correct public key), making
it unusable for applications like photo sharing. Lastly, the incentive for service
providers to implement privacy enforcing encryption systems on their servers is very
low. Rather than that, many business models actually depend on the possibility to
process an individual user’s private data, e.g. for providing targeted advertisement.

3.2.1.3 Locality Awareness

Centralized approaches have inherently bad locality properties. Communication
paths always lead through at least one distinct server, even when a more direct
connection between client devices is possible. This problematic is also referred to
as triangular routing. Triangular routing has an especially high impact in social
user-centric applications, as socially connected users are often also physically close
to each other as well, e.g. in the same building or city3. With centralized approaches
however, nearby nodes still need to contact and route through a (probably far away)
server in order to communicate. This leads to higher latencies and is wasteful to
network resources. Another consequence of triangular routing is the dependence
on global Internet connectivity. If no server can be reached the communication
through a centralized application becomes impossible, even if the users wanting to
communicate reside in the same subnetwork.

Several attempts exist to alleviate the problems of triangular routing, like the use
of proxies and content delivery networks (CDNs) or the distribution of the server
set into multiple server farms in different locations. However, those solutions induce
additional costs and are thus limited in their scope and impact. They furthermore
focus predominantly on improving the latency of applications and do not address
problems like the dependence on global connectivity.

3.2.1.4 Conclusion

The client-server paradigm is a powerful foundation for sophisticated distributed
applications. Centralized applications are comparatively easy to develop and capable
of handling large loads with hundreds of millions of users. However, a chain of
inherent problems, including the costs involved in maintaining such scalability, the
issues concerning user privacy and the unavoidability of triangular routing, makes
the suitability of this approach for the purposes of this thesis questionable. The
exploration of more decentralized approaches seems appropriate.

3The authors in [47], for example, identify correlations between geographic proximity and friend-
ship in the social graph of the OSN Facebook.
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3.2.2 Hybrid Approaches

The introduction of more responsibilities for clients alleviates many of the problems
of classical centralized systems, like the problem of scalability and, to some extent,
the large detours in routing. Several central shortcomings remain untouched though,
like the fact that the server still plays a critical part in the communication process.
He is thus still a single point of failure and an entry point for disrupting and con-
trolling the whole network. The global connectivity problematic remains unsolved
as well, as clients need to connect to the server at least once in order to participate
in the application. Often, a constant connection to the server is required for optimal
functioning.

With those shortcomings in mind, the rest of this thesis will focus on the exploration
of fully decentralized approaches.

3.2.3 Unstructured Overlays

Fully decentralized unstructured overlays are the simplest form of a pure peer-to-peer
network. Their flexible structure makes them adaptable to different requirements
and easy to design and implement. In comparison to DHTs, they allow for far more
control over the storage locations of particular datasets. Any node can hold copies
of any piece of data, while no node is obliged by a dedicated distribution logic to
store specific items. This flexibility is desirable, as it enables users to hand-pick
storage locations based on information from the social graph. They furthermore
support fuzzy searches, where the exact key of the sought data does not have to be
known in advance. This lookup technique could be expanded to support dynamic
service discovery queries, e.g. ”all befriended devices nearby that have spare CPU
resources”.

In general however, unstructured overlays offer worse performance than their struc-
tured counterparts [11, 37]. Most importantly, they scale very badly. Lookup op-
erations, for example, have linear complexity in the number of participating nodes
(O(n)). This implies that, in the worst case, a query needs to pass through all
nodes in the network before a result can be determined. The lookup performance
can be improved through aggressive caching and the replication of datasets across
several peers. However, the impact of those techniques is limited as they do not
protect against worst-case scenarios like the search for an object that doesn’t exist
in the network at all. Such cases might still require the querying of all nodes for
the sake of correctness. Consistency and correctness requirements can be weakened,
which allows for further optimizations like the limitation of flooding hops. How-
ever, consistency and correctness might be desirable properties in the context of a
general-purpose user-centric networking middleware.

3.2.3.1 UIA Social Routing

An interesting solution to the scalability problem of unstructured overlays was pro-
posed by Ford as part of his work on the Unmanaged Internet Architecture (UIA)
[18]. UIA is a communication middleware implementing a personal name system for
the easy addressing and discovery of befriended devices. It is similar in some ways
to the SODESSON platform on which this thesis is based, with the important dis-
tinction that while SODESSON is user-centric, UIA is device-centric and deals only
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with the identification and addressing of devices. UIA uses an overlay addressing
scheme based on unique endpoint identifiers (EIDs) for each device. Several ap-
proaches have been proposed for routing with those identifiers. Here, the focus will
be on social routing, an approach based on an unstructured peer-to-peer network
between devices. The network is used mostly for providing EID lookups, resolving
them into underlay addresses like IPs.

The difference between UIA’s social routing overlay and classical unstructured over-
lays lies in the fact that the UIA overlay is based on social links. UIA assumes
social connections between users and the devices in their personal name systems. It
uses this information for choosing overlay neighbors and for restricting the flooding
of queries in the network. Lookups are performed in rounds, flooding only directly
befriended nodes at first and moving to larger friendship distances (friends of friends
and beyond) if no results were found. In this way, queries can be restricted to nodes
in the social neighborhood, which greatly improves the scalability of the overlay.
This technique can be applied to other domains as well, not only to the lookup of
device IDs. In fact, most applications realizable with unstructured overlays can be
enhanced by restricting the flooding and gossiping traffic to socially close peers.

This technique has one major drawback however, namely that it is restricted to
communication processes between socially connected nodes. If, for example, a re-
quired dataset is stored on a node outside a user’s social circle (e.g. the node is
looking up the EID of a random device), the user will not be able to efficiently lo-
cate that dataset. Evaluation results of UIA’s social routing show that while nodes
with friendship distances of one and two can be reached quickly and with high prob-
ability, the lookup performance degrades sharply at higher distances. At three hops
(friends of friends of friends), lookups succeed only 50% of the time when 40% of the
devices in the network are stable and up to 256 nodes are contacted during flooding
[18].

It can be argued that this is not a problem in user-centric networking scenarios
where most communication is based around social connections of one or two hops.
The design of SODESSON reflects this standpoint as well - communication processes
with no underlying social connectedness are not expected. Still, a restriction like
this could lead to practical inconveniences that need to be discussed. For example,
users might meet new contacts that are very far from their usual social neighborhood
and that they do not want to add to their contact lists immediately. A chicken-egg
problem surfaces - how can a user forge social bonds to nodes outside his social circle
if he cannot communicate with them in the first place? Other challenges that need
to be discussed include the implementation of publish/subscribe functionality and
the possibility of integrating locality information into the solution. For the former, it
is interesting to see whether the restriction of flooding improves the performance of
publish/subscribe-style communication as well, as plain unstructured overlays have
been found to perform poorly in this respect [4]. For the latter, proximity-restricted
flooding could be discussed, e.g. for service discovery in local networks.

3.2.3.2 Storage

Finally, in order for this solution to satisfy the requirements outlined in section 3.1.2,
a reliable storage system must be implementable on top of it as well. Unstructured,
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fully decentralized storage networks have already been realized in filesharing appli-
cations like Gnutella4 and Turtle F2F [36]. In those systems however, nodes store
only data that is interesting for them themselves. It is unlikely that this behavioral
model will provide a sufficient level of data availability in the scenario of this thesis,
especially in cases where a user does not own many devices. A possible solution
is the proactive replication of data to nodes that might not be interested in it di-
rectly, similar to the usage of friend peers for storing backups (as proposed in [46]).
However, the coordination of those replicas, reacting to node failures and keeping
replicas up to date, might be difficult on top of an unstructured network and will
likely induce a high communication overhead.

3.2.4 Distributed Hash Tables

This section examines the feasibility of key-based routing (KBR) overlays and dis-
tributed hash tables (DHTs) as a basis for a user-centric networking middleware.
KBR overlays appear promising, as they are decentralized (and thus not prone to
many of the shortcomings of centralized systems) and yet offer high performance in
comparison to unstructured approaches. They are especially interesting due to their
scalability, with no operation involving more than O(log n) hops on the total number
of overlay nodes. The potential of KBR/DHT systems has already been noted in the
original SODESSON paper [6], where they are envisioned to power both the storage
system and the public/subscribe mechanisms. Several related projects have chosen
DHTs for enabling some of their core functionality, including Safebook [14], Peer-
SoN [10] and the Social Distributed Hash Table (SDHT) [33]. Routing mechanisms
based on DHTs have been proposed for the Unmanaged Internet Architecture, as
an alternative to unstructured social routing [18]. None of these projects focuses
explicitly on providing general user-centric networking functionality. However, their
scenarios are similar and many of the problems they face, like the lookup of users
and devices, are relevant in the context of this thesis as well.

Structured overlays are an active research field, with many analytical publications
and countless proposals for specific routing and storage algorithms. KBR overlays
have been enhanced with locality awareness, making them adaptable to the underlay
topology and improving the directness of their overlay routes (the stretch between
the overlay path and the direct underlay route). Proposals that include this kind
of optimizations include the protocols Bamboo [39] and R/Kademlia [22], which
are also interesting for other reasons like their performance under churn. Routing
improvements based on the integration of information from the social graph have
also been discussed [42]. The findings of those works can be incorporated into the
design of a general user-centric networking architecture.

On the downside, despite the extensiveness of structured overlays research, few pro-
duction systems with a significant amount of users actually exist. KBR/DHT-based
systems have been used mainly for filesharing, in applications like BitTorrent (track-
erless mode). Their practical, real-life feasibility for powering large user-centric ap-
plications is thus still largely uncertain. Another general drawback of KBR/DHT
systems is their lack of flexibility. In a classical DHT, data is, in effect, distributed
randomly across peers, ignoring factors like locality or the existence of social ties.
Its rigid data distribution scheme makes it difficult to influence the choice of storage

4http://rfc-gnutella.sourceforge.net/

http://rfc-gnutella.sourceforge.net/
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locations. However, both the restriction of data to a certain topological scope, e.g.
for data that is only interesting locally, and the explicit preference of befriended
nodes as storage locations, e.g. for higher resilience against malicious nodes and for
better privacy, might be desirable. Partial solutions to this problem have already
been proposed. PeerSoN and Safebook use befriended node for storing sensitive
data and put references to those nodes into the DHT, thus using it only as a lookup
service. For optimizing storage locality, hierarchical DHT (HDHT) designs that or-
ganize peers into clusters based on their proximity in the underlying network might
be considered as well [1, 2, 19, 21]. HDHTs might also be helpful for improving
the overlay’s performance on network partitioning and merging, as storage domains
become more clearly separated. HDHTs are, however, still a very young area of
research with many open questions, including the concrete mechanisms for cluster
forming and the actual practical feasibility. An easier but less thorough solution
for optimizing the local availability of stored data is to use replication and caching,
distributing interesting data pieces evenly across the underlying network.

3.2.4.1 Realization of Core Functionality

This section explores the feasibility of KBR/DHT-based solutions to provide the
basic functionality required by the SODESSON middleware, as outlined in section
3.1.2.

Addressing and Lookup For addressing and lookup, two challenges are faced.
Firstly, finding an appropriate addressing scheme for devices and enabling
the efficient lookup of a device’s underlay address. Secondly, implementing
a user-addressing scheme and a mapping from users to devices that supports
both automatic device selection and the lookup of all devices associated to
a user. For device addressing, a scheme might be chosen in which a device’s
unique address is the same as its identifier in the overlay. In this way, standard
key-based routing can be used for looking up devices. Arbitrary addressing
schemes without a connection to the overlay address can be used as well. In
this cases, a DHT-based lookup system similar to UIA’s Identity Hash Routing
can be employed, which uses device addresses as keys to the device’s current
underlay address. A DHT lookup system like this can be used for solving the
user addressing problem as well, as seen for example in PeerSoN.

Storage Users of the SODESSON middleware should be able to store data persis-
tently, so that its availability does not depend on the availability of a particular
user and its devices. A straightforward way for realizing this functionality is
to put data directly into the DHT, leaving it up to the DHT implementa-
tion to handle availability and integrity related issues. Most DHT protocols
are equipped with efficient replication strategies for such tasks, allowing them
to achieve high data availability. However, in networks with a lot of churn
those strategies might lead to a high overhead in bandwidth and storage space
consumption, especially if large chunks of data are being stored. Alternative
storage strategies might be used in this case, that are unconnected to the clas-
sic DHT logic and can eventually leverage node proximity and the existence
of social trust. Safebook and PeerSoN propose storage approaches that go in
this direction.
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Publish/Subscribe Publish/subscribe mechanism are expected to form the foun-
dation for most user-centric communication processes in SODESSON. A KBR/-
DHT-based solution should thus provide an efficient interface for such func-
tionality. Two principal approaches for implementing publish/subscribe-style
communication on top of structured overlays can be found in the literature -
one that is based around constructing a multicast delivery tree on top of the
overlay topology and another that forms direct connections to each subscriber.
SCRIBE [12] is an example for the former technique and a version of the latter
is employed in the Internet Indirection Infrastructure (i3 ) [44].

As can be seen, the basic functionality requirements outlined in section 3.1.2 can
easily be met when building upon KBR overlays and DHTs. Additionally, several
different approaches to realizing each of the required mechanisms exist, which allows
for greater flexibility when designing the system.

3.2.5 Discussion

Summarizing the analyses of all presented approaches, decentralized systems ap-
pear to be a better basis for a general user-centric networking middleware than
client/server setups or hybrid approaches. They perform better in terms of resilience
and costs and are more suitable for enforcing user privacy. As for the choice of an
optimal overlay type, both unstructured approaches employing social information
and KBR/DHT-based solutions appear promising to some extent.

However, unstructured overlays have a set of practical issues that make their feasi-
bility for real-life applications questionable. They are also, despite the restriction of
lookup tasks to social contacts, still likely to offer a lower overall performance than
KBR-based systems for lookup and routing tasks5. Their suitability for powering a
storage system with adequate availability is largely uncertain.

Apart from the rigidity of the data distribution and access schemes they impose, ap-
proaches based on KBR overlays and DHTs do not have any critical open issues or
limitations. Most of the functionality that is relevant for supporting a general user-
centric networking middleware has already been realized with the help of DHTs and
with good performance. Additionally, the pursuit of a KBR/DHT-based approach
offers a wide range of different design choices, leaving room for specific optimizations.
Most prominently, the possibility for integrating mechanisms known from unstruc-
tured designs is given, like the free selection of storage locations or the support for
fuzzy searches (thus combining the best from both worlds).

Thus, an approach based on structured overlays and distributed hash tables is found
to be more suiting for the goals of this thesis than proposals based on unstructured
overlays. Because of this, and since developing a working prototype for both ap-
proaches would exceed the scope of this thesis, the focus will be exclusively on
developing a KBR/DHT-based system from now on.

5The amount of hops needed to route to a socially close node in a setup similar to UIA’s social
routing requires the querying of O(m) nodes, m being the number of socially connected overlay
neighbors per node. In many cases, this is still worse than the standard O(n) complexity found in
KBR overlays. Also, with KBR overlays, non-socially connected nodes can be efficiently found as
well.
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3.3 Summary

In this chapter, the requirements to a communication and storage infrastructure for
user-centric networking were outlined. Based on those requirements, a number of
general approaches for developing such a system were proposed. A short analysis of
each of the approaches was performed, together with a discussion of their advantages
and disadvantages. As a result of those discussions, decentralized approaches were
found to be the most suitable for realizing the goals of this thesis. Specifically, an
approach based on key-based routing overlays and distributed hash tables was found
to be most promising, mainly due to its logarithmic scalability and the high degree
of design freedom it allows.

The DHT-based approach to a communication and storage infrastructure for SODES-
SON will be put to a more thorough analysis in the subsequent Chapter 4. Following
that, a specific solution will be designed and evaluated (in later chapters).



4. Structured Overlays for
User-Centric Networking

This chapter features an additional, deeper analysis of the KBR/DHT-based ap-
proach outlined in Chapter 3. A more thorough review of the related work will
be conducted first, discussing the use of key-based routing overlays and DHTs in
projects similar to SODESSON. Following that, two publish/subscribe mechanisms
based on structured overlays will be presented. Proposals for realizing the actual
key-based routing and distributed storage functionality will then be regarded in
greater detail. Storage mechanisms not based on standard DHT logic will be con-
sidered as well. Finally, ways for dealing with the partitioning and merging of the
overlay will be discussed.

4.1 Related Work

Distributed hash tables running on top of structured overlays have already been
proposed for the use with SODESSON. In the original design [6], they are envi-
sioned as the foundation for a persistent storage system handling profile pages and
similar small datasets. Other projects with similarities to SODESSON make use
of DHTs as well, for example PeerSoN [10] and Safebook [14]. Those frameworks
aim at mimicking the functionality of popular online social networks like Facebook
and Google+, allowing the publishing of profile data, photo albums and status up-
dates. In Safebook, the bulk of the storage (especially for privacy-sensitive data) is
handled by an additional unstructured network of privacy-enforcing proxies called
matryoshkas. A DHT is used for looking up storage locations in the matryoshka net-
work. PeerSoN aims at reaching a similar configuration. It uses a DHT as a lookup
tool while the actual data is either exchanged directly between source and destina-
tion or persisted on few individual nodes. However, the specific storage mechanics
are still work in progress. Storage criteria like social connectedness or temporal and
geographical diversity are being discussed, just as opportunistic delivery schemes
similar to techniques used in delay-tolerant networks (DTNs). PeerSoN’s current
working prototype uses a DHT for persistently storing small pieces of data, e.g. for
realizing asynchronous messaging.
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The Social Distributed Hash Table (SDHT) [33], another related project, uses a
DHT in combination with an additional overlay structure reflecting the social net-
work between users. Again, the DHT is used mainly as a lookup service for nodes
and resources. The social overlay is used for enabling flooding-based searches, sim-
ilar to the lookup in UIA’s social routing overlay (section 3.2.3.1). In this way,
SDHT combines advantages of unstructured and structured overlays, allowing flexi-
ble, socially-aware searches and, at the same time, efficient resource retrieval through
a DHT.

DHT-based lookup of device addresses is also being performed in identity hash rout-
ing, a routing mechanism proposed for UIA. In this scheme, all UIA nodes form a
global DHT structure, using their endpoint identifiers (EIDs) as addresses in the
DHT. EIDs can then be resolved to underlay addresses using standard DHT mech-
anisms. In addition to lookup however, the identity hash routing DHT can also be
used for routing actual data traffic between nodes. This is seen as a solution for
dealing with connectivity problems and NAT traversal [18].

The presented projects demonstrate how DHTs can be used in scenarios that are
similar to that of this thesis. However, none of them shares the main goal of SODES-
SON, namely the creation of a generic middleware for user-centric networking. Peer-
SoN and Safebook focus more on the replication of classical OSN functionality and
on guaranteeing strong privacy. SDHT concentrates on content sharing and search.
UIA is a communication middleware, but addresses devices instead of users, provid-
ing a weaker abstraction than SODESSON. As a result, several important challenges
are not addressed in those examples.

Firstly, none of the presented systems deals with the problematic of addressing users
while handling multiple devices for each. Secondly, all of them lack a publish/sub-
scribe-based communication abstraction as requested by the original SODESSON
paper. Lastly, the examples are mostly not locality-aware and have not been assessed
in scenarios involving network partitioning and losses of Internet connectivity.

4.2 Publish/Subscribe

Communication in SODESSON is expected to rely exclusively on a publish/sub-
scribe interface for message passing. However, publish/subscribe functionality was
not yet discussed in the examples presented in Section 4.1. Still, several proposals
for decentralized publish/subscribe systems exist in the literature, many of whom
employ KBR overlays and DHTs.

The focus here will be on just two notable examples, SCRIBE [12] and i3 [44].
Additionally, the possibility of implementing delay-tolerant messaging (i.e. hybrid
services as described in Section 3.1.2) on top of those publish/subscribe mechanisms
will be discussed.

4.2.1 SCRIBE

SCRIBE [12] is a multicast architecture based on the Pastry overlay [40]. It works
by constructing a multicast tree from a rendezvous point (RP) to all group members
(subscribers). Figure 4.1a shows an example of such a message dissemination tree.
The rendezvous point is the overlay node responsible for the multicast group’s group
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(a) Publication dissemination in SCRIBE. (b) Publication dissemination in i3.

Figure 4.1: Comparison of publish/subscribe approaches.

ID. Group IDs can be generated from topic strings by hashing them into ID space.
The tree is built using standard overlay links, following the lookup paths between
RPs and subscribers.

The use of a multicast tree for message dissemination has the advantage of mini-
mizing the bandwidth overhead when sending large pieces of data, as messages get
duplicated less and closer to their destinations. This is efficient only in conjunction
with a locality-aware overlay like Pastry, where proximity information is used for
determining suitable overlay neighbors. In overlays with a high stretch, that reflect
the underlay topology poorly, this technique can potentially lead to an increase in
communication delays. Even with a low path stretch though, messages delivered
over SCRIBE’s multicast tree still arrive slower than messages sent directly. At the
minimum, they need to pass through the RP, which is already a form of triangular
routing. For small messages, that do not consume a lot of bandwidth, a protocol
that delivers them outside of the overlay structure might thus be more appropriate.
The same goes for multicast groups with only few subscribers.

Incidentally, most messages in SODESSON are expected to be rather small, e.g.
like instant messages. Most topics, too, are unlikely to have significant amounts of
subscribers at any given time. A SCRIBE-based publish/subscribe system might
thus not be optimal for the use with SODESSON. Still, it might be considered for
cases where large messages are being transmitted to many users, e.g. when a user
pushes a photo album to all of his friends.

4.2.2 I3

The Internet Indirection Infrastructure (i3 ) [44] is another take on providing pub-
lish/subscribe functionality in a decentralized manner. Its main difference to the
SCRIBE approach is that it doesn’t construct a multicast tree, but instead dissem-
inates messages in one hop from the rendezvous point to the subscribers1. Thus, all
subscribers need to register directly at the RP. The direct dissemination mechanism
is faster for smaller messages and fewer subscribers, but makes the RP a potential
bottleneck. It is unlikely though that the RP will actually be overloaded in the
average SODESSON use case. And even if, caching and the use of proxy nodes can
be used to alleviate the problem, as mentioned in the original i3 paper. A graphical
comparison of the message routing in i3 and SCRIBE can be seen in Figure 4.1.

1However, techniques for forming multicast trees on top of i3 have also been proposed [44].
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However, the centralization of publish/subscribe traffic in the RP also raises secu-
rity and privacy concerns. Furthermore, it still introduces an additional level of
indirection and thus leads to triangular routing (like in the SCRIBE approach).

4.2.3 Hybrid Services

SODESSON’s publish/subscribe system should also be able to support hybrid ser-
vices as described in Section 3.1.2. However, none of the presented publish/subscribe
systems is capable of persisting messages to offline recipients and delivering them at
a later time. Solutions to that problem would need to face following challenges:

1. A reliable, decentralized storage system must be realized for the persistent
storage of non-delivered messages.

2. The set of proper recipients for a message must be generated and stored, so
that the message can be delivered to all of them but not to subscribers joining
the topic after the initial publication of the message.

3. Information about who has already received a message must be gathered and
stored, to avoid the duplicate delivery of messages and so that messages that
have reached all of its recipients can be erased from the persistent storage
system.

4. The delivery of a message must be triggered whenever one of its recipients,
that did not receive it previously, becomes available.

While the first problem is trivial, no comparable work was found in the literature
that addresses the latter three. Thus, the realization of delay-tolerant messaging
services on top of a KBR/DHT-based publish/subscribe system remains an open
question.

4.2.4 Conclusion

Based on the preceding analysis, a publish/subscribe architecture similar to i3 seems
most appropriate for meeting the goals of this thesis. A system like this would
perform well in situations where small pieces of data are being distributed to a small
set of subscribers - a likely use-case in SODESSON. However, several open challenges
remain with this approach, including the centralization of traffic and responsibilities
in one single RP node and the lack of mechanisms for realizing delay-tolerant message
delivery.

4.3 Overlay Structure and Routing

A multitude of different KBR protocols has been proposed in the literature. Out
of those, Bamboo [39] and R/Kademlia [22] are especially interesting in the context
of this thesis. They both show good locality properties and have performed well in
previous evaluations. The two protocols will be introduced here in greater detail2.
Additionally, hierarchical overlay structures will be presented and the possibilities
for integrating social graph information into key-based structured overlays will be
discussed as well.

2Adaptive algorithms like Accordion [28] and Chameleon [9] are interesting as well, but their
consideration would exceed the scope of this thesis.



4.3. Overlay Structure and Routing 27

4.3.1 Bamboo

Bamboo [39] is a structured overlay with excellent locality properties and a low
communication overhead. It is based on the Pastry protocol [40], optimizing its
overlay maintenance mechanisms for a better handling of churn. Like Pastry, Bam-
boo forms a bidirectional ring topology in combination with a hypercube topology.
Nodes are arranged on the ring based on their overlay IDs and keep track of sev-
eral predecessors and successors, their leaf set. An additional routing table is used
for establishing the hypercube. Nodes in the routing table are organized based on
the length of their longest common prefix with the current node. When choosing
entries for a given prefix length, nodes that are close in the underlying network are
preferred, i.e. nodes with whom low communication latencies exist. This is referred
to as Proximity Neighbor Selection (PNS) and is usually implemented by measuring
round-trip times (RTTs) to potential neighbors or by using a network coordinate
system like Vivaldi [15]. The routing table is filled by looking up random addresses
with a given prefix and storing the result (which is the closest existing node ID to
that address) or by asking neighbors for pieces of their routing table (e.g. all nodes
they know with a given prefix). Depending on the implementation it is also possible
to learn about new neighbors while forwarding their queries or while performing own
lookups.

Having established a correct topology, messages are routed through the overlay in a
recursive fashion, by forwarding them from node to node. At every hop, the currently
visited node first checks if a member of its leaf set is responsible for the destination
address. If so, this node becomes the next and final hop of the routing chain.
Likewise, the current node also checks if it itself is responsible for the destination
key and terminates the process if so. If neither the current node nor a member of its
leaf set could be identified as the final destination, a suitable next hop is chosen from
the current hop’s routing table. The choice is based on a prefix-based metric, i.e. a
metric where the distance between two keys idA and idB is equal to lcp(idA, idB), the
longest common prefix of the two. Thus, a neighbor N is chosen so that for all other
neighbors M holds, that lcp(idN , iddest) ≥ lcp(idM , iddest). In the rare event that no
neighbor of the current node has a longer common prefix with the destination than
the current node, a different metric is used instead. Namely, of all known peers, the
one node is chosen as the next hop whose ID is numerically closest to the destination
(i.e. not a prefix-based metric is used, but a metric based on numerical distance).
Since most hops can be chosen using the prefix-based method however, diminishing
the common prefix length with the target by at least one bit for each passed node,
routing queries take at most O(log n) steps (n being the number of nodes in the
overlay) until reaching their destinations. Still, in the worst case, where all routing
tables in the overlay are empty and messages are routed only using the leaf set,
requests are still guaranteed to succeed correctly.

An interesting effect of Bamboo’s prefix-based routing in combination with PNS is
that lookup paths tend to converge very quickly. Two lookup queries for the same
address, performed by separate nodes that are topologically close in the underlying
network, are likely to start following the same sequence of hops when getting closer
to the destination. Specifically, this quality was attributed to Pastry in [12], where
it is called route convergence. Since Bamboo and Pastry differ exclusively in their
maintenance and node discovery mechanisms, it is safe to assume that the property
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applies to Bamboo as well. Route convergence can be leveraged for implementing
efficient caching schemes, like in PPR [41].

4.3.2 R/Kademlia

R/Kademlia [22] is a modified version of the Kademlia [34] protocol. In contrast
to Pastry and Bamboo, Kademlia uses an XOR metric for determining the distance
between two overlay keys (the distance between two keys idA and idB is calculated
by solving idA ⊕ idB). Kademlia does not construct an underlying ring topology,
but relies only on the links in its routing table for discovering nodes. The routing
table is organized in such a way that a hypercube routing geometry is spanned.
It is based around a system of buckets for different XOR distances from a node’s
own key. Each bucket holds up to k nodes (with k usually being around 16), which
means that, with high probability, multiple next hop candidates exist at each step.
Kademlia leverages this by using iterative routing, where each hop reports its next
hop candidates to the originator of the query who then chooses and contacts the
next hops himself. By using iterative lookups, several paths can be expanded in
parallel, which improves the overlay’s resilience to churn and offers some protection
against malicious nodes. However, iterative lookups are also slow and with bad
locality properties, as every visited node has to report back to the originator of the
query.

R/Kademlia aims at fixing those shortcomings by using a recursive type of routing
that is similar to the one used in Pastry and Bamboo. Nodes forward received queries
directly to the next hop instead of reporting back to the query originator. Also like in
Pasty and Bamboo, it uses PNS for improving the locality of its queries. In addition
to PNS, R/Kademlia implements proximity routing (PR) as well, a technique which
incorporates latency information at the time of routing by preferring more local next
hop candidates.

Explicit routing table maintenance in Kademlia and R/Kademlia is kept to a min-
imum, with the majority of nodes being discovered and refreshed while forwarding
application-initiated messages and lookup queries. Different than in Pastry and
Bamboo, this passive type of maintenance is typically sufficient, as Kademlia’s rout-
ing table organization allows it to store redundant nodes which aid the recovery
from node failures. The redundancy in Kademlia’s and R/Kademlia’s routing tables
also enables instances of these protocols to know a larger part of the network, thus
shortening lookup paths.

A deficit in Kademlia and R/Kademlia is their lack of an underlying ring topology
that guarantees that nodes will know the nodes closest to them in ID space, i.e.
their overlay siblings. Guaranteeing that nodes know their siblings greatly increases
the chance that a query will succeed, as it ensures that there is always some, albeit
suboptimal, path between two nodes in the overlay. In addition, the knowledge of
a particular number of siblings is important for running a DHT on top of the KBR
overlay. The DHT component needs to know all s closest nodes, so that it knows
where replicas should be located (here s is identical to the number of replicas the
DHT is required to create). Furthermore, when a node is storing a replica, it must
be able to tell which of its siblings is responsible for the original data set. If using
a ring topology, 2*s siblings need to actually be known for this assessment to be
made.
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Kademlia’s original protocol converges to a set of sibling nodes. In some cases
however, correct siblings might not be added to any of the buckets, leading to an
incomplete sibling list. The authors in [34] suggest modifying the standard routing
table (bucket splitting) logic in such cases. However, such modifications introduce
an additional level of complexity and can potentially worsen the algorithms perfor-
mance. Another approach is to extend Kademlia by an explicit additional sibling
table as suggested in [8]. The sibling table is exempted from Kademlia’s standard
bucket maintenance logic and always holds the η∗s closest other nodes (in ID space)
that a node is aware of. If the parameter η is chosen accordingly, the sibling table
can also be used for determining the responsible node for a dataset of which the
current node is storing a replica, as mentioned earlier. A value of 5 was shown to
be sufficient for this task [8].

4.3.3 Hierarchical Approaches

So far the focus has been on classical KBR protocols with a flat identifier and
routing space containing all nodes in the overlay. An alternative to this approach is
to organize nodes into clusters and hierarchies of clusters, achieving a better mapping
to the underlying network. A variety of such hierarchical KBR (HKBR) overlays has
been suggested in the literature, several of which will be presented in this section3.
The goal of this survey is to find ways of improving the locality properties of the
KBR layer, and the presented approaches are chosen accordingly.

HKBR overlays can be divided into two general categories - homogeneous overlays
and superpeer designs4. Figure 4.2 depicts two examples for both types, assuming
an overlay hierarchy of two levels. As the names of the categories suggest, all nodes
in the homogeneous class share the same set of responsibilities, while some nodes
in the latter category differ from the rest and need to contribute more resources.
Those superpeers usually act as gateways between hierarchy levels, e.g. being part of
both a local overlay and an overlay connecting superpeers of different local clusters.
Heterogeneous designs using superpeers are used in other types of overlay networks
as well, and for different purposes than improving the locality of overlay traffic (e.g.
[29, 51]). In the particular case of improving the overlays locality properties however,
superpeer designs seem to perform worse than homogeneous approaches, mostly due
to their higher maintenance overhead and bad load balancing [2]. For this reason,
and because the existence of heterogeneity inevitably leads to a higher degree of
complexity, superpeer approaches will be discarded from consideration from now
on.

In homogeneous approaches, every peer is part of several overlays simultaneously
with each overlay being formed at a different level of the cluster hierarchy. Overlays
at higher levels are typically constructed by merging the overlays from lower level
clusters, as proposed for example by Ganesan et al. in [21]. The authors propose a
generic construction (Canon) that can be used for transforming normal, flat KBR
algorithms into hierarchical ones. Here, hierarchical overlays created in this way

3The wording used in the literature is hierarchical DHTs. However, since the interest here
is mainly on the KBR part of those designs, the reference will be to hierarchical KBR overlays
instead.

4In some places in the literature, the naming horizontal/vertical is used instead of homoge-
nous/superpeer.
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Figure 4.2: Types of hierarchical KBR overlays. Both depicted networks assume
an overlay hierarchy of two levels. Note that, on the lower hierarchy level, each
cluster of nodes forms a self-sufficient, isolated overlay. On the higher level, either
an additional overlay is formed by distinct superpeers (in the superpeer approach),
or a global overlay containing all nodes is constructed by mering the local cluster
overlays (in homogeneous designs).

will also be referred to as Canonical HKBR overlays. In the Canon approach, the
overlays at the lowest level of the hierarchy are formed using the standard mecha-
nisms of the chosen KBR protocol, but using only nodes that should fall into the
same cluster. When two clusters are merged, every node can create connections to
nodes from the other cluster following the standard logic of the underlying KBR
protocol, but obeying following additional rule: for every new neighbor M of a node
N it must hold, that there are no neighbors in N ’s local overlay that are closer to
N in ID space than M . In this way, Canonical HKBR protocols guarantee that
(1) messages originating from the same cluster and targeting the same key always
leave the cluster through the same exit node and (2) routes connecting nodes in the
same cluster never exit that cluster. HPastry [19] is an application of the Canon
paradigm to Pastry that combines the hierarchical approach with Pastry’s locality
optimizations. Additionally, HPastry also supports a more flexible interconnection
of clusters that is not strictly hierarchical, in an attempt to better map to the under-
lying network. In these ways, HPastry represents a significant improvement to the
protocols outlined in [21]. Eventually however, it could be enhanced even further by
substituting its Pastry component with a more churn-resistant KBR protocol like
Bamboo or R/Kademlia.

Cyclone [1] is another interesting approach to transforming regular KBR overlays
into hierarchical ones. Like in Canon-derived approaches, a hierarchy of clusters is
constructed, with higher level clusters being formed by merging lower level ones.
The main difference in Cyclone is the use of unique cluster IDs stored as a suffix
in all node IDs. The authors suggest, amongst other things, that this technique
enables the use of simpler maintenance and routing mechanisms that the ones used
in Canon. Cyclone furthermore supports the combination of different KBR protocols
when merging clusters while Canon is confined to using the same KBR algorithm
everywhere. Lastly, and perhaps most interestingly, the existence of cluster IDs
enables the explicit addressing of a cluster, e.g. queries can be constructed that look
for a given key only in a specific cluster. On the down side, the existence of unique



4.3. Overlay Structure and Routing 31

IDs for each cluster also raises scalability concerns and introduces the problem of
agreeing on a cluster identifier.

An important open question in hierarchical KBR designs is the way in which clusters
are formed. Clearly, proximity in the underlying network should be the main crite-
ria for grouping nodes together. The authors in [50] propose a distributed binning
scheme using well known landmark nodes for determining a node’s cluster member-
ship. However, the existence of fixed landmark nodes is problematic in the context of
a fully decentralized system. In [20], nodes decide whether they are part of a cluster
based on RTT measurements. With this method, network coordinate systems like
Vivaldi [15] could also be used for speeding up the proximity assessment. The design
of HPastry suggests that clusters should map to underlying Autonomous Systems,
yielding one cluster per AS [19]. This approach provides a very clean mapping to the
underlying network structure but introduces the practical problem of discovering a
node’s AS number. Closely related to cluster forming is the question of generating
cluster identifiers in designs similar to Cyclone. The automatic selection of a cluster
ID might involve voting procedures between nodes in each cluster, similar to the
selection of connectivity domain identifiers in [35].

4.3.4 Social Routing

In the context of designing a user-centric networking overlay, the question to what
extent social information can be integrated into KBR mechanisms becomes especially
interesting. Several authors have suggested the use of social network information
for protecting against Sybil attacks [17, 26]. In a Sybil attack, the attacker creates
multiple fake overlay identities and uses them to disrupt or control routing proce-
dures. However, since security is not a focus of this thesis, countermeasures against
Sybil attacks will not be discussed further here. The authors of SPROUT [42] pro-
pose a related integration point for social network information, but one that has
applications beyond security. Their suggestion is the preferred insertion of nodes,
with whom social ties exist, into a node’s routing table. When routing messages,
friendly nodes should then be used for forwarding messages whenever possible, i.e.
except in cases when no friendly nodes are known that are closer to the destination
than the currently visited node. While the main focus of their work is again the
improvement of the KBR’s security (by routing over trusted nodes whenever possi-
ble), the social routing mechanisms they propose might be also interesting for other
reasons. For one, routing over social links might be beneficial in applications where
nodes in the same social neighborhood are likely to communicate with each other.
Preferring friend nodes at every hop might furthermore lead to a fast convergence
of routing paths targeting the same key, a beneficial property for caching and smart
replica placement. However, strictly preferring socially connected nodes during rout-
ing might break locality-sensitive routing schemes like the ones used in Bamboo and
R/Kademlia. Thus, a compromise between preferring local nodes and preferring
socially connected nodes must be found in order to fully satisfy the requirements in
this thesis. Even without SPROUT-like routing however, the prioritized inclusion
of friend nodes into a node’s routing table might still be beneficial. On one hand,
it greatly increases the chance that befriended nodes will be overlay neighbors as
well and that overlay messages between them will thus travel only one hop. One
the other hand, with every node knowing about several other friend nodes, unstruc-
tured flooding techniques over friendship links could be realized, similar to the ones
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used in UIA’s Social Routing [18]. This could allow for more dynamic queries than
are otherwise supported by a DHT, for example queries like ”devices in my social
neighborhood that can offer printing services right now”.

4.3.5 Conclusion

Bamboo and R/Kademlia both show very good locality properties and behave well
under churn. Both protocols are thus potential candidates for providing key-based
routing functionality to the solutions in this thesis. Hierarchical KBR approaches
can be used to further improve the overlay’s mapping to the underlying network
structure, but several unresolved questions and practical issues still exist with them.
Lastly, social information can be integrated into existing overlay protocols to improve
the performance of communication processes between socially connected nodes, to
additionally enhance the security of the routing and to enable the construction of
unstructured overlay structures formed by socially connected nodes.

4.4 Data Storage and Replication

This section focuses on exploring suitable storage and replication strategies for a
KBR/DHT-based middleware for user-centric networking. Firstly, the nature of the
data that solutions will likely have to work with will be discussed. Followed by
that, actual strategies will be presented. Based on the stated requirements and
expectations and on the discussed examples, an actual storage system concept will
then be developed in Chapter 5.

4.4.1 Requirements and Expected Types of Data

In a DHT-based user-centric networking middleware like the one sketched in previous
sections and chapters, specifically one that is based around an i3-style publish/sub-
scribe architecture, data storage services will be needed for two general categories
of data:

System Data Datasets required by SODESSON components, e.g. subscriber lists
used by the publish/subscribe subsystem.

Application Data Data from SODESSON applications. The middleware is either
explicitly instructed to store it or does so implicitly for realizing the delayed
delivery of messages.

System data is expected to be small in size (e.g. less than 10 kilobyte per individual
dataset). Frequent writes are likely, as well as frequent reads. Stored datasets
should be available in the whole overlay and at all times, independent of churn and
individual node failures. Application data will likely be more heterogeneous and
vary across different applications. Table 4.1 shows several examples of application-
generated datasets that might need to be stored, together with an estimation of
their availability requirements and size. The size descriptors, ”small” and ”large”,
are not clearly defined but can be interpreted as below and above several megabytes
per relevant collection of datasets, or below and above 10-20 kilobyte per individual
dataset. ”Target Group” denotes the set of entities that must be able to access
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datasets, from the viewpoint of the user they originated from. The presented data
types are chosen with several user-centric applications in mind, the realization of
which might be interesting on top of the SODESSON middleware. Some of those
applications however, like filesharing and the decentralized storage of personal files
and backups, are not central to the goals of the SODESSON project and thus do
not have to be considered very deeply.

Data Type Availability
Requirements

Size Target Group

Persisted Instant Messages high small individual users
Profile Pages high small other users
Microblogging Posts high small other users
Private Data (e.g. Contacts) high small own devices
Persisted Multimedia Messages high large individual users
Photo Albums low large other users
Files for Filesharing none large other users
Personal Files high large own devices
Personal File Backups low large own devices

Table 4.1: Possible application data types with requirements and properties.

A high degree of reliability is required for both system and application data, i.e. the
storage system should not ”forget” datasets or falsify their contents. Furthermore,
it should be able to maintain these guarantees under conditions of churn and dis-
turbances in the underlying network5. Lastly, while security is not in the focus of
this work, solutions should not be inherently insecure and open to attackers, as the
existence of malicious users can not be ruled out in realistic usage scenarios. Clas-
sical DHT mechanisms already fulfill those basic requirements. However, additions
to the standard techniques, as well as alternative approaches, might offer a better
performance in certain scenarios and will thus be considered as well in the following
sections.

4.4.2 Example Strategies

Several example approaches for realizing and enhancing the data storage aspects
of a DHT will be presented in the following sections. To ease the explanation of
the different techniques, hash-table semantics will be assumed at all places. Fur-
thermore, XK will denote an arbitrary chunk of data that needs to be stored or
retrieved and K its corresponding key, so that get(K)→ XK . The node responsible
for K according to standard DHT logic will be represented as NK . For NK holds,
that there is no other node in the overlay whoose node ID is closer to K than that
of NK . NK is also the node that is returned whenever a KBR lookup is made on K.

A number of additional criteria will now be defined for aiding the comparison of the
presented approaches. These properties can be seen as an addition to the require-
ments outlined in Section 4.4.1. They are not directly related to the SODESSON

5Extreme disturbances leading to a partitioning of the overlay network will be discussed in
greater detail in Section 4.5.
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scenario, but aim at establishing a general frame for the discussion of storage and
replication strategies. Following criteria can be defined6:

Accessibility Replicas resulting from the use of the technique should be useful and
accessible to many potential requesters.

Put Locality It should be possible to store data without having to transmit it to
far away-nodes. This is desirable for data that is mostly of local interest and
changes frequently, as well as for larger pieces or data like photo albums and
media files, which should be moved around the network as little as possible.

Get Locality Analogically to Put Locality, it is desirable that interesting datasets
are available locally and can be obtained without needing to make long-
distance connections.

Freshness Replicas should always hold the most up to date version of a resource.
This is especially the case for important data that changes frequently, like
subscriber lists in publish/subscribe applications.

Variability The choice of storage and replication locations should be variable to
better adapt to different scenarios. Depending on the context, storage locations
could be chosen based on social connections (and trust) or based on proximity
characteristics, e.g. being well positioned in relation to all interested peers.

Independence Operations like the storage, editing and deletion of data should be
independent from individual nodes. The existence of controller nodes can lead
to asymmetric load distributions and a potential single point of failure. Addi-
tionally, the centralization of management tasks poses a security risk as it can
place malicious nodes in positions where they can cause major disturbances.

Overhead The storage solution should not impose a significant additional commu-
nication overhead.

4.4.2.1 Sibling Replication

Sibling replication is the standard solution for realizing reliable storage in a DHT.
During the initial put, XK is sent to NK who then stores it locally. NK then creates
s copies (replicas) of XK and proactively pushes them towards its s siblings, i.e. the
s nodes that are closest to NK in ID space. In ring-based topologies like Pastry and
Bamboo for example, those are the immediate ring neighbors of NK . After the initial
storage and replication of XK , maintenance mechanisms ensure that the number of
replicas is preserved independently of individual node failures and churn. Replicas
are proactively pushed to new nodes entering the set of the s + 1 closest nodes to
K. In that way, XK is always replicated on that set of nodes and, for sufficiently
high s, never gets ”forgotten” by the system, as even if many nodes exit the overlay
at the same time, some replicas are still likely to remain.

During data retrieval, more than one node can be queried, leading to a higher
probability that XK will be found and that a correct answer will be returned (the

6The list of criteria and the comparison table at the end of this section (Table 4.2) is inspired
by the similar work in [5].
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latter effect can be achieved by comparing all received answers). Additionally, the
replica locations to be queried can be chosen based on proximity characteristics,
so that get requests remain more local. This kind of server selection can happen
implicitly when using locality optimized KBR-schemes, e.g. KBR algorithms using
PR and PNS. An unavoidable drawback of standard sibling replication is that sibling
nodes can be scattered around the whole network. Put requests and maintenance
mechanisms thus both generate non-local traffic. Another drawback stems from the
rigidity of standard DHT data distribution logic - assuming random node identifiers,
there is no effective way of influencing the choice of storage locations for XK

7.

4.4.2.2 Passive Caching

Caching can improve the standard DHT storage performance by placing additional
copies of XK at key locations. If a cached copy of a dataset is placed along the path
of a query for that dataset, the querying node’s lookup path can be terminated at
the cache location without needing to continue to Nk or one of its siblings. If copies
exist that are close in terms of underlay network proximity, the retrieval times for
XK can shortened as well, as the data transfer remains more local.

Passive caching is the simplest form of caching, where copies of a given dataset
are opportunistically created whenever it passes by. For example, if put requests
or the answers to get requests get routed through the overlay, the nodes along the
return path may all form local copies of the requested data. The next time they are
requested to forward a get request for the same key, they can simply return their
cached copies.

Passive caching is easy to implement and requires no additional traffic, thus having
zero communication overhead. One of its biggest drawbacks however is its bad
freshness, as cached version of XK do not get updated proactively when new versions
of the data are putted into the DHT. Additionally, it is often more efficient to
transmit data payloads directly between nodes, without routing them through the
overlay. With such an approach, passive caching techniques are not realizable at all.

4.4.2.3 Proactive Caching

Proactive caching denotes the explicit distribution of additional copies of XK across
a set of nodes. The pushing of XK to those additional locations is handled by NK .
The authors in [38] and [41] suggest replicating datasets according to popularity, so
that more copies are made for popular resources. This does not only increase the
chance that local copies will exist for datasets that a node is interested in, but also
leads to better load balancing as the task of delivering popular pieces of data gets
distributed across a larger set of peers. In [41], it is additionally suggested to place
replicas at locations where paths to a key are expected to converge and from where
more requests are thus expected to pass, possibly leveraging the path convergence
property of protocols like Pastry and Bamboo.

Proactive caching is a good way to shorten lookup times and to increase the prob-
ability that local copies of data will exist for interested nodes. The distribution of
those copies is problematic though, because of the extra traffic it generates (which
will likely be non-local) and because of the concentration of responsibilities in one
responsible node, thus loosing independence.

7Modifying K can alter only the choice of the main responsible node for X.
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4.4.2.4 Social Storage

Here, social storage denotes the general concept of storing data on nodes based
on social connections, e.g. storing files on nodes belonging to befriended users.
Several projects have previously proposed decentralized storage systems along those
lines, including F2N [27] and Friendstore [46] and the decentralized OSN PeerSoN
[10]. F2N and Friendstore employ unstructured overlays and distribute a user’s
data on a set of nodes belonging to social contacts of that user. Data availability is
not recognized to be of critical importance and it is accepted that certain datasets
might become temporarily unavailable if all the nodes that are storing it become
inactive. Information about data locations gets stored by interested nodes and can
be disseminated by flooding. PeerSoN, on the other hand, uses a DHT for storing
and disseminating information about storage locations. The DHT is not used for
storing the actual data, put holds only pointers to its real locations.

Storing data on socially connected nodes is especially helpful in cases, where (1)
large amounts of data need to be stored, as users will likely be ready to spare more
resources for helping friends, and (2) sensitive data needs to be stored, as nodes
belonging to social contacts are usually considered more trustworthy. In addition,
social storage offers a high degree of flexibility when choosing storage locations, al-
lowing the choice of nodes based on complementary criteria as well, e.g. their prox-
imity in the underlying network to potentially interested nodes. On a downside,
data availability might not be guaranteed with the social storage approach. Data
availability and a higher level of resilience might be achieved by implementing ad-
ditional replication mechanisms. However, no specific proposals for such replication
mechanisms were found in the literature and their complexity and communication
overhead remains largely uncertain.

4.4.2.5 Hierarchical DHT Storage

The use of hierarchical KBR algorithms like the ones described in Section 4.3.3
enables the deployment of hierarchical storage and replication schemes, hence leading
to actual hierarchical DHTs. Based on previous discussions, the focus here will be
only on homogeneous hierarchical overlays, i.e. approaches where all nodes share
the same set of responsibilities and rights. Hierarchical DHTs allow the restriction
of the scope in which a certain piece of data gets distributed across the network.
A common approach is to store data originating from a local cluster only within
that cluster, i.e. in a local DHT formed by nodes only of that cluster. In this
way both put and get operations become local for nodes within this local overlay.
This a highly satisfying setup for datasets that are only of local interest anyway.
For datasets that might be of interest for non-local nodes as well, a pointer to the
location of the data can be put into a higher level of the DHT hierarchy [21]. A
reference like this can either be a list of node IDs of the data’s replica holders or,
in overlays that support it, the ID of the cluster that the data is saved in. Using
pointers, datasets in local clusters can be accessed globally using a two-step lookup
procedure, resolving first the location of the pointer and second the address it is
pointing to. In cases where the data is predominantly of global interest it can also
be stored normally on a global scope using standard flat DHT logic.

Apart from enabling sophisticated data placement methods, the use of hierarchical
overlays also improves the performance of caching techniques, due to the high degree
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Criteria Sibling
Replication

Path
Caching

Proactive
Caching

Social
Storage

HDHT
Storage1

Accessibility all on path all friends all or local
Put Locality no no no possible yes
Get Locality likely2 likely2 likely2 possible yes
Freshness yes no yes yes yes
Variability no constrained no yes local or not
Independence yes yes no possible yes
Overhead low none low uncertain low
1 In a hierarchical DHT without supernodes (homogenous design).
2 When using proximity routing or proximity neighbor selection (PR and PNS).

Table 4.2: Comparison of different data storage and replication techniques

of path convergence they induce. Namely, lookups by nodes from a given cluster
targeting the same key K always leave the cluster through the same node when
moving to a higher scope. This exit node is thus an excellent location for caching
datasets associated with K or for forming local replicas of them.

4.4.3 Discussion

Classical sibling replication is a stable base for realizing reliable storage in a DHT.
However, its mediocre locality properties and its lack of variability in choosing stor-
age locations make its unmodified use problematic in the context of this thesis. This
is especially true in the case of large datasets, the storage and replication of which
would induce a high amount of non-local traffic and burden many randomly chosen
overlay nodes. Path caching offers a slight improvement in terms of data locality
and incurs no extra bandwidth costs, but is not suitable for datasets that change
frequently. Proactive caching is better in such cases. Still, it is unclear whether
the overhead in maintaining its extra replicas will be worth the increase in locality
and get performance. Additionally, the technique is dependent on a single controller
node per dataset to distribute copies, thus placing a higher load on it and making it
a potential point of failure. Social storage enables the hand-picking of storage loca-
tions for each dataset. This approach is suitable for larger pieces of data, as nodes
can be chosen specifically based on their willingness to contribute more resources.
However, as is, the concept is not suitable for datasets that need to be available
100% of the time. Lastly, hierarchical DHT approaches form an excellent base for
achieving a high degree of locality in both the distribution and the retrieval of data.
They are, however, coupled with the use of a hierarchical KBR overlay, with all
challenges that stem from that.

A listing of the storage and replication techniques discussed so far together with a
short evaluation of each one under the criteria from the beginning of Section 4.4.2
can be found in Table 4.2.

4.5 Consistency on Partitioning and Merging

One of the design goals of the SODESSON middleware is its ability to deal with
temporary losses in global connectivity, i.e. its capacity to remain functional dur-
ing both the partitioning of the network and its merging back together. For the
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user-centric networking overlay discussed here, those challenges surface on two lev-
els: on the KBR layer, which needs to knit around holes resulting from connectivity
losses but also enable the reunification of separated overlay segments, and on the
DHT/Storage layer, where data consistency needs to be maintained and the exis-
tence of local copies of important datasets needs to be ensured. Both KBR and
storage-related challenges will be addressed in the remainder of this section.

4.5.1 KBR Component

KBR algorithms like Bamboo and Kademlia are already capable of dealing with
network partitioning, due to their adaptable structure and their resilience to churn
and other, more minor, network disturbances. In cases where there are frequent
temporary breaks in internet connectivity however, standard overlay maintenance
mechanisms might be too slow to efficiently rebuild the overlay structure. Also,
when merging separated overlays, the additional challenge arises of actually boot-
strapping the merging process. As a mitigation for some of these problems, the
authors in [23] propose, amongst other things, that nodes to not remove neighbors
from their routing tables when the network gets partitioned (possibly marking them
as unavailable but not removing them entirely). In this way, the overlay can be
reconstructed faster when the networks are rejoined. Additionally, and complemen-
tary, mechanisms for the explicit detection of partitioning and merging events in the
underlying network can be used.

4.5.2 DHT Component

Provided that the underlying KBR topology remains stable on partitioning and
merging events, two challenges remain to be faced by the DHT component. Firstly,
ensuring that important data is available locally when a partitioning event occurs
and secondly, that datasets remain consistent when two subnetworks are merged,
e.g. that conflicts from a simultaneous modification of a dataset in both partitions
get resolved appropriately.

The first task is not easily solvable due to the nature of the uniform data distribution
scheme used in classical DHTs. The use of hierarchical DHT approaches might be
helpful here, as relevant datasets could be replicated in the local cluster and, in this
way, preserved locally if the cluster becomes cut off from the rest of the network.
In flat designs, a similar effect might be achieved by using an appropriate caching
technique. Lastly, it can also be left to applications and components initiating the
data storage to refresh and reinsert their datasets themselves when it seizes to be
available locally. In the case of the publish/subscribe subsystem for example, sub-
scribers might resubscribe to a topic if the subscription information has become lost
due to a partitioning event. The effectiveness of this approach rests on the assump-
tion that only datasets originating from currently reachable nodes are important in
the case of a partitioned network.

For the challenge of maintaining data consistency in the DHT, it is helpful to first
consider the different types of put operations that might be employed. In the basic
case, a DHT entry holds only one value per key that gets overwritten during every
put operation on that key. For many applications however (including, for exam-
ple, publish/subscribe systems similar to i3), this semantic is too weak, as several
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datasets might need to be stored under the same key. Thus, DHT implementation
often support multiple datasets per key, usually by supplying an additional iden-
tifier for each dataset. With this setup, conflicts resulting from the simultaneous
modification of a resource can be avoided by separating the resource into distinct
independent datasets with only one responsible author for each. Under the assump-
tion that no entity (including users) can reside in two separated network partitions
at the same time, sets of data can thus remain consistent during partitioning events.

For applications where the separation of data into independent parts with only one
exclusive author for each part is not possible, for example a collaborative docu-
ment editing application, the detection of consistency violations can be moved into
the application layer. Mechanisms like the use of hashes, sequence numbers and
timestamps can additionally be employed to support the detection and resolution of
conflicts. The use of vector clocks is possible as well. However, vectors of dynamic
size might be needed (if the set of data generating entities is non-static).

4.5.3 Conclusion

KBR overlays are inherently capable of dealing with partitioning and merging issues.
Small modifications, e.g. in the way routing tables are maintained, can additionally
enhance this quality. DHTs are also able to recover from a temporary partitioning of
the network, but the consistency of datasets across partitions can not be guaranteed
for resources which can be modified by multiple entities. Applications should thus
be designed to avoid the existence of multiple contributors per dataset. In cases
where this is not possible, conflict resolution might need to be performed on the
application level.

4.6 Summary

The use of structured overlays and DHTs still appears promising for achieving the
design goals of the SODESSON middleware. Existing projects like the PeerSon OSN
[10] prove that basic user-centric functionality can readily be achieved with this
approach. Effective publish/subscribe-style communication is realizable as well and
many proposals exist for improving the locality aspects of both the overlay routing
layer and the storage subsystem. However, several open questions remain. For
one, a suitable addressing scheme has yet to be developed, that provides a mapping
between users and devices and enables the implementation of smart device selection
schemes when communicating with a user. Additionally, a mechanism for realizing
delay-tolerant publish/subscribe communication is still lacking for KBR/DHT-based
approaches. Lastly, existing publish/subscribe systems based on structured overlays
all introduce an additional level of indirection and thus lead to triangular routing.
Methods for avoiding this inherent lack of locality are required.
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5. Design

This chapter introduces a specific proposal for a communication and storage in-
frastructure for the user-centric networking middleware SODESSON. Based on the
analysis performed in previous chapters, the approach developed here will be based
on a distributed hash table running on top of a key-based routing overlay. This
chapter features the abstract design of the proposal, with implementation specific
details following in Chapter 6.

Firstly, the core elements of the proposal will be introduced, namely the overlay
routing component and the publish/subscribe subsystem. Following that, the focus
will move to the specifics of the storage layer. After a discussion of addressing,
device selection and related issues, locality optimizations to the approach will be
suggested. Lastly, ways of leveraging social information will be proposed.

5.1 Basic Design

This section deals with the foundation of the presented proposal, namely the choice
of an overlay routing algorithm and the design of a publish/subscribe subsystem
running on top of it.

5.1.1 Overlay Structure

Structured, key-based routing overlays have previously been identified as a suitable
base for powering a decentralized user-centric networking middleware. Both flat and
hierarchical approaches have been proposed (Section 4.3). Here, hierarchal overlays
will again be discussed shortly, before jumping to the comparison of specific protocols
and formulating the final proposal.

5.1.1.1 Hierarchical KBR Overlays

Hierarchical KBR overlays offer several interesting advantages over their flat coun-
terparts. For one, they offer a better adaptation to the underlying network topology
by forming clusters on top of subnetworks and Autonomous Systems. They aim at
minimizing inter-cluster and maximizing intra-cluster communication, thus keeping
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overlay traffic as local as possible. Their strong path convergence properties make
it easy to cache interesting resources locally, or even to form local replicas of them.
When using them as part of a DHT, they enable the replication of data to specific
clusters only, thus limiting its spread to regions where it is not likely to be needed.
This locality of storage is also likely to be helpful in cases of network partitioning.

However, HKBRs also introduce a set of new challenges. For one, they are clearly
more complex and difficult to implement that standard KBR protocols. Also, several
practical issues have still not been addressed sufficiently in the literature, like the
specifics of the local peer detection and cluster forming mechanisms or the compati-
bility of hierarchical approaches with NAT setups. Additionally, no actual prototype
systems could be found at the time of writing of this thesis, so the real life practi-
cability of hierarchical KBR approaches remains uncertain. Lastly, with approaches
like Canon [21] and Cyclone [1], existing flat KBR overlays can easily be transformed
into hierarchical ones. It thus seems appropriate to first construct a system based
on flat overlays, leveraging the lesser complexity of this approach and its higher
probability of yielding good results. Once such a system is in place, hierarchical
approaches can be tested on it as an improvement to the original design.

5.1.1.2 Overlay Protocols

Two flat KBR protocols were previously identified as suitable for the use with the
presented approach - Bamboo [39] and R/Kademlia [22]. Since both overlays offer
very similar properties, a definite analytic decision for one or the other is difficult.
Bamboo’s main advantage over R/Kademlia is its additional ring topology that offers
a clearer and more stable view on a node’s intermediate neighbors in ID space (i.e.
its siblings). In R/Kademlia however, a similar effect like that of an additional ring
structure can be achieved by introducing a dedicated sibling bucket (like suggested
in [8]). R/Kademlia’s main advantage is the higher degree of redundancy in its
routing table, which leads to a higher interconnection in the overlay and thus to a
higher resilience to failures and lower lookup times. Still, Bamboo’s routing table
could easily be modified to hold more entries as well.

Ultimatively, the choice of a KBR routing protocol to power the proposal in this
thesis falls to R/Kademlia. Since no clear advantages of one protocol over the other
could be identified, the reasons for this decision are mostly practical in nature.
Namely, a good R/Kademlia implementation for OverSim was available at the time
of writing, upon which a prototype of the presented solution could be based.

5.1.1.3 Summary

The proposed system is based on the flat key-based routing protocol R/Kademlia
[22], enhanced by an additional sibling bucket as proposed in [8]. Hierarchical ap-
proaches were discarded due to their higher complexity and unresolved questions
regarding their practical feasibility. A later migration of the presented solution to a
hierarchical design is likely to be possible. Concerning other flat KBR approaches,
Bamboo is recognized as a valid alternative to R/Kademlia. In the end, R/Kademlia
was preferred for practical reasons, i.e. the existence of a better implementation of
the algorithm upon which a prototype could be based.
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5.1.2 Publish/Subscribe Subsystem

The publish/subscribe architecture for SODESSON proposed here is based on the
design of the Internet Indirection Infrastructure (i3) [44]. Like in i3, responsible
nodes are chosen for each publish/subscribe topic. It is the task of those nodes,
which are commonly referred to as rendezvous points (RPs), to manage subscribers
and disseminate publications. The RP for a topic is the node who, upon hashing
the topic title to an overlay identifier, is responsible for that identifier. Any common
hashing algorithm can be used for mapping the topic title to an overlay identifier.
However, hash functions that are difficult to reverse and for which collisions are un-
likely and hard to generate are more appropriate (i.e. cryptographic hash functions),
as they offer some additional degree of privacy and protection against disturbances
by malicious nodes. In this thesis, the SHA-1 algorithm is used for hashing topics
into ID space.

Whenever a node S wants to subscribe to a topic T , it first produces a hash of T ’s
title, yielding the topic’s overlay identifier idT . S then sends a subscribe request via
the overlay, targeted at idT . The request gets forwarded according to standard KBR
logic1 until it reaches responsible(idT ), the node whose overlay identifier is closer to
idT than that of any other node in the overlay. This responsible node for idT is also
the proper RP for T , i.e. rp(T ) ≡ responsible(idT ). Upon receiving S’s request, the
RP creates a subscription object and stores it in the DHT. A subscription object
holds information about one subscriber to a topic, most importantly its overlay
ID (at this level, subscribers are always single nodes, e.g. devices). The underlay
addresses of subscribers are not stored in the DHT as they might change over time.
The tracking of subscribers is thus strictly left to the KBR layer. The subscriptions
for a topic T are stored in the DHT under the key idT , i.e. the topic’s mapping
to ID space. An additional, random identifier is added to subscriptions when they
are put in the DHT, to allow several subscriptions to be stored under one DHT key.
Once the DHT put has been completed successfully, rp(T ) sends a subscribe response
back to S, informing it about the success of the subscription attempt. By storing
subscriptions in the DHT, no state needs to be kept in the RP and subscription
information is automatically persisted across RP changes (an RP change can be
caused by a failure of the old RP, for example).

Like subscribe requests, publications to T are also firstly routed blindly through
the overlay towards idT , the topic’s mapping to ID space. Upon arrival, the publish
request gets evaluated by the RP. At this step, the RP may impose some form of
access control and determine whether the publishing node P is eligible to publish
on this topic. If the RP decides to deliver the publication, it first retrieves the set of
subscribers from the DHT. Since rp(T ) ≡ responsible(idT ), the RP is also the main
replica location for datasets stored in the DHT under the key idT (which includes
the set of subscription objects for T ). Depending on the setup of the DHT, the
retrieval of the set of subscriptions might thus involve no additional communication
with other nodes and, consequently, be very efficient. Once the set of subscribers
has been received by the SODESSON component of rp(T ), the RP can proceed to
the delivery of the publication. To each registered subscriber, a separate notification
message is routed through the overlay containing the data published by P . Figure
5.1 visualizes this mechanism. Alternatively, the actual publication can also be

1Since R/Kademlia is being employed, recursive routing is used.
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Figure 5.1: Basic Publish/Subscribe Mechanism.

omitted in those notifications and, instead, persisted. In such cases, subscribers
that are interested in the actual data can make an additional consume request to
the RP, upon which the data is transmitted. This is tightly related to the semantics
of a publish/subscribe-based storage interface as proposed in Section 5.2.3.

5.2 Storage Subsystem

This section describes the decentralized storage component of the proposed solution,
dealing first with its general design and, following that, discussing modifications for
the handling of larger dataset. Additionally, the semantics of a publish/subscribe-
based interface for the storage system will be elaborated.

5.2.1 General Approach

Based on the discussion in Section 4.4.1 it can be assumed, that the storage subsys-
tem of the SODESSON middleware will mostly have to deal with datasets that are
small in size, i.e. less than about 10-20 kilobytes per chunk. This includes datasets
related to the correct functioning of the SODESSON middleware itself, for example
data objects needed by the publish/subscribe infrastructure, as well as data that gets
stored by SODESSON applications. Datasets might furthermore change very fre-
quently, like, for example, the subscription information for a busy publish/subscribe
topic.

For small chunks of data that get updated frequently, a standard DHT system
with sibling replication is sufficient for providing reliable storage services. Caching
can be used additionally, but its efficiency is questionable based on the preceding
analysis. Unstructured storage techniques based on social connections (i.e. social
storage), on the other hand, are not a good general solution for such types of data,
as not all datasets that might need to be stored will stem from a social context
(e.g. certain kinds of system data) and the low availability qualities of these storage
approaches will likely be unacceptable in many cases. Also, the storage location
selection procedures and the two-step lookup mechanism will likely induce a higher
communication overhead than standard sibling replication and ultimately lead to a
lower performance when dealing with smaller files. A hierarchical DHT approach
might form a reasonable improvement to the classic sibling replication scheme when
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dealing with small files, by allowing the local storage and replication of locally inter-
esting datasets. However, hierarchical DHTs require the use of a hierarchical KBR
overlay, which was ruled out previously.

Thus, classical DHT storage semantics and a standard sibling replication scheme
will be used for dealing with common small files in the proposed system. This setup
will form the base for the rest of the storage subsystem.

5.2.2 Storage of Large Datasets

While small data chunks that change frequently might form the majority of datasets
that the developed storage system will have to deal with, larger pieces of data will
likely also need to be stored. Examples for such datasets include photo albums
and multimedia messages persisted for later delivery. Storing larger pieces of data
(i.e. in the magnitude of several megabytes and more) might be problematic with
standard DHT storage and replication schemes, as the distribution and maintenance
of large chunks of data becomes difficult to manage and might cause a significant
communication and storage overhead in concerned nodes. One solution is to separate
larger datasets into several small chunks and place them into the DHT. However,
this would still result in the same amount of data being stored in the overlay, so
that the overall bandwidth and storage space consumption would not change. Most
importantly, the burden for handling those elevated amounts of data would still
fall to random nodes that have no significant motivation in providing an elevated
amount of resources. Socially connected nodes, on the other hand, might be more
willing to provide resources to each other, especially if they themselves have an
interest in the data that is being stored (as, for example, might be the case with
shared photo albums). It thus seems appropriate that an additional social storage
system, inspired, for example, by the work in [10] and [46], be developed for the
better handling of large datasets. However, the full specification of such a storage
system would exceed the scope of this thesis and thus remains a subject for future
work. The focus here will remain on the more common case of dealing with small
datasets for which the standard DHT approach is sufficient.

5.2.3 Storage Interface

In the attempt to create a unified interface for the SODESSON middleware, the
desire arises to use the publish/subscribe semantic for accessing persistent storage
mechanisms as well. While this is typically handled by a put/get type of interface,
the publish/subscribe pattern can also be used in this context. In the publish/sub-
scribe system presented earlier, published data can be stored persistently by the RP,
thus mimicking a put call. In addition to just putting the data though, it is also
pushed to interested nodes (the subscribers) immediately, or notifications about the
change are sent. Likewise, subscribe-requests can both return the current data set
and register the originating node for updates. In the common case where a node is
always interested in the most up-to-date version of a resource, updates by the RP
reduce delays and the unnecessary overhead resulting from the continuous polling
for changes. Control information about whether a publication should be persisted
or not and about which parts of a publications should be delivered can be passed to
RPs by adding appropriate flags in publish, subscribe and consume requests.
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A publish/subscribe approach for handling persistent storage results in a cleaner
and more unified programming interface. Additionally, the continuous polling for
changes in a resource (busy wait) is being avoided. Thus, the described publish/sub-
scribe interface is proposed as the standard interface for SODESSON applications
accessing the storage system. Internal SODESSON components should be able to
use it as well, if appropriate.

5.2.4 Summary

The presented storage solution is based on a classical DHT coupled with a stan-
dard sibling replication scheme. For small datasets that change frequently, which
is expected to be the major type of data that the solution will have to work with,
these techniques perform sufficiently well. For larger datasets, a complementary so-
cial storage approach is possible that distributes data on socially connected nodes.
Lastly, a persistent storage interface based on the publish/subscribe communication
pattern was introduced, as a way of creating a more unified programming interface
for SODESSON and avoiding the continuous polling for resources in anticipation of
changes.

5.3 User Addressing and Device Selection

In a user-centric networking middleware like the being developed here, two types of
actors require a designated addressing scheme - the participating devices and the
actual users. Additionally, a mapping between those groups must be implemented
together with respective lookup mechanisms for resolving user IDs to the set of
their devices and device IDs to addresses in the underlying network. An additional
challenge in SODESSON is the problem of device selection - choosing with which
one of a user’s devices to communicate with in a given situation.

The presented challenges will be addressed in the remainder of this section.

5.3.1 Identifier Generation

Addressing schemes for both users and devices can be realized easily, as demon-
strated for example in [18] (for devices) and [10, 14] (for users). Here, we will simply
use the overlay ID of each device as its device identifier as well. This way, standard
KBR mechanisms can be used for looking up a device’s underlay address. Over-
lay IDs will be generated randomly following a uniform distribution. The uniform
distribution of node IDs improves the load balancing in the overlay as every node
becomes responsible for a roughly equal portion of the key space. Additionally, the
randomness of node IDs implies an ID/locator split, i.e. the ID of a device becomes
independent of its position in the underlying network and can be retained when it
moves.

In the presented approach, user IDs will be generated randomly as well. For security
purposes, they might additionally be tied to some form of cryptographic material,
i.e. an asymmetric cryptographic key pair. This cryptographic material might even
be used for generating user and device IDs, yielding cryptographically generated ad-
dresses (CGAs). However, since security and privacy are not in the central focus of
this thesis, these approaches will not be elaborated further and the random genera-
tion of both sets of identifiers will be assumed.
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5.3.2 Mapping Between Identifier Groups

At this level, the novel challenge surfaces of providing a mapping between user and
device IDs in the specific case where several active devices may exist per user. The
challenge can be divided into two subproblems - allowing devices to know which user
they belong to and allowing entities that know a user’s user ID to discover all devices
that belong to that user. For the first half of the problem, a simple reference to the
parent user can be stored on devices when setting them up as SODESSON nodes,
together with some form of cryptographic material for authentication purposes (e.g.
a certificate signed by the user). This would allow a device to both communicate
its owner and, eventually, identify its siblings, i.e. devices by the same user. The
second half of the problem can be solved by storing the list of each user’s devices at
a known point in the DHT and allowing devices to append their addresses to those
lists. This is similar to creating a publish/subscribe topic for each user and having
all of his devices subscribe to it when they become available. The resolution of user
addresses to device IDs then condenses to making DHT get request using the user
IDs as keys.

5.3.3 Device Selection

Having introduced identifiers for both users and devices and a mapping between
those sets of addresses, the problem of device selection remains. Device selection
can be seen as a form of anycast to a user address, where the best possible receiver
(from the user’s devices) is chosen based on the context of the communication. This
choice is thus highly application and situation specific. In the instant messaging use
case for example, the most appropriate device would be the one to which the user
is paying attention to right now. For the photo album application, it would be the
device where the sought photos are most likely to be stored. The devices themselves,
together with the applications running on them, have the best view on the optimality
of a candidate in a given situation. They should thus be able to communicate
this information to the SODESSON middleware. Most communication processes
in SODESSON will be based on a publish/subscribe interface. This introduces two
options for restricting the circle of possible receivers and facilitating device selection.
Firstly, topics could be organized as such that all subscribed devices are sensible
targets for a request. For example, only devices with a running instant messaging
program would subscribe to the instant messaging topic. Secondly, information
about the status of a device can be communicated proactively to the RP. Devices
can, for example, resubscribe to a topic periodically, communicating their activity
level.

5.3.4 Summary

In the presented solution, both user IDs and device IDs are generated randomly
following a uniform probability distribution. Additionally, a device’s overlay address
is set so that it is equivalent to the device’s device ID. The mapping between user
and device IDs is facilitated by storing user addresses on the devices they own and
by storing device IDs in the DHT, using their owners’ user IDs as keys. The DHT
can then be used as a lookup tool for resolving user IDs to device addresses. Lastly,
device selection was discussed, with the result that SODESSON applications must
communicate their status and their preferences to RPs, in order to facilitate the
correct delivery of messages.
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5.4 Delay-Tolerant Publish/Subscribe

A publish/subscribe-based storage interface as suggested in Section 5.2.3 could also
be used for implementing hybrid, i.e. delay-tolerant communication services as re-
quested in Section 3.1.2. However, several additional challenges arise when persisting
messages only temporarily for later delivery. For one, the RP must be able to find
out which nodes are supposed to receive a given message it has persisted, as nodes
subscribing after the initial publish might not be meant to receive it. Then, it must
be ensured that all proper recipients receive the message and its transmission is
triggered accordingly when a node becomes available. When the message has been
delivered to everybody or a timeout is reached, it should be deleted, i.e. removed
from persistent storage. Lastly, the delivery of delayed messages should be resilient
to churn and independent of the availability of one particular node, e.g. one partic-
ular RP.

The proposed solution to these challenges involves the concept of pending acknowl-
edgements (pending ACKs or PACKs). In many communication systems, ACK
messages are sent by the receivers of a message to communicate to the sender that
it was delivered successfully. Since in an i3-based publish/subscribe system like the
one that was previously suggested, the RP is responsible for disseminating messages
to the final subscribers, the RP is also proposed here as the collector of acknowledge-
ments. With this setup, PACK objects are employed as follows: for every publication
pi to a topic T that an RP receives, and every subscriber S to T , the RP gener-
ates one unique PACK object pack(T, S, pi) and stores it in the DHT. Every PACK
object represents the expectation that one specific ACK message will be received.
Thus, for each ACK an RP receives, it deletes the corresponding PACK from the
DHT. A schematic describing this mechanism can be found in Figure 5.2.

Every RP keeps track of its subscribers, marking their state in the DHT. If a node
does not acknowledge publications that were sent to it, or if other nodes report it
to be down, the RP marks it as inactive. Amongst other things, publications are
not forwarded to nodes that have been marked as inactive, until they resubscribe or
otherwise signal their availability. When a node is active however, and pending
ACKs for it exist in the DHT, the RP periodically attempts to retransmit the
corresponding publications. Likewise, whenever a node resubscribes to a topic after
a period of inactivity (e.g. after it has been offline), the responsible RP uses the
information from the stored PACKs to immediately trigger the retransmission of all
publications that the node has missed. It is in this specific way that the delayed
transmission of messages is effectively realized.

Since PACKs are generated at the moment of publication, they also implicitly en-
capsulate information about the proper receivers of a publication. If the set of
subscribers changes for example, the existing PACKs are still retained, so that (1)
all the proper receivers get the publication and (2) it doesn’t get distributed to any
nodes that were not subscribed to the topic at the time of publication. PACKs
are deleted whenever their corresponding ACK arrives. In this way, no duplicate
retransmissions can be triggered based on this PACK and the message will be de-
livered only once. Additionally, the existence of PACKs for a publication is an
indicator that the publication must still be delivered to some nodes and its storage
is thus still necessary. Analogically, once the last PACK for a topic was deleted and
the persistence of the publications was not explicitly requested (e.g. by setting an
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Figure 5.2: Pending ACKs Mechanism.

appropriate flag in the publish request), it can be safely deleted. Lastly, since PACK
objects are stored in the DHT, the described mechanism does not depend on the
availability of one particular RP node. Once the responsibility for a topic changes
(e.g. when the old RP leaves the network), the new RP simply requests the relevant
set of PACKs from the DHT again, so that no information is lost.

5.5 Direct Publish

This section describes an optimization of the publish/subscribe infrastructure intro-
duced in Section 5.1.2. The aim of the presented technique is to improve the locality
of the communication system, by eliminating the additional routing hop over the
RP.

Firstly, the reasons for developing this enhancement will be elaborated. Following
that, the actual proposed mechanisms will be described. Lastly, the effects of the
presented modifications will be discussed.

5.5.1 Motivation

The publish/subscribe system outlined in Section 5.1.2 provides a reliable, decen-
tralized infrastructure for both direct and, with the introduction of PACKs, delay-
tolerant communication. In the context of this thesis however, it has one major
drawback: the existence of triangular routing in the way publications are distributed.
Everytime a node wants to publish a set of data to a topic T , it has to pass it to
rp(T ) first. Only then does it get forwarded to the subscribers. Thus, publications
always make a detour over the RP, introducing an additional routing hop and higher
communication latencies. Additionally, since the distribution of node identifiers is
uniform and unconnected to the topology of the underlying network, the additional
routing hop rp(T ) will be some random device in the network, most likely far away in
terms of underlying network proximity from both the publishers and the subscribers
to T 2. Even worse, it is expected that in the SODESSON usage scenario publish-
ers and subscribers will be relatively close to each other in the social graph, which
was shown to correlate with geographical proximity [47]. Geographical proximity,

2This might be avoidable if building upon a hierarchical KBR overlay.
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in turn, is likely to imply some degree of proximity in the Internet graph as well.
Thus, in the context of this thesis, publishers and subscribers are expected to often
be close to each other in the underlying network. In this way, the communication
detour over a far away rendezvous point introduces an even higher increase in la-
tency in comparison to direct communication as well as an non-neglectable amount
of avoidable non-local traffic (especially when large amounts of data are transferred,
e.g. in file transfer applications). For these reasons, the need is seen for a more
direct method of publishing data. Consequently, a direct publish mechanism will be
proposed here.

5.5.2 Mechanism

The main design goal of the presented approach is the elimination of the additional
routing step over the RP, thus enabling the direct data exchange between publishers
and subscribers. In order for publishers to be able to transmit their notifications
directly to subscribers, the set of subscribers for the target topic T must be known
to them. Thus, as the first step of the presented algorithm, the RP of T informs
potential publishers about the subscribers to T . For simplicity, it will be assumed
from now on that all potential publishers to a topic are also subscribers to that
same topic. If needed, all presented mechanisms can be adjusted for relaxing this
constraint, although at the cost of a slightly more complex design. All subscribers to
T being potential publishers as well, rp(T ) informs them about the other subscribers
to T using dedicated subscription notifications. These notification messages are sent
whenever a node subscribes to a topic. They are sent to the newly subscribing node,
carrying information about all nodes that are currently subscribed, and they are sent
to all of the currently subscribed nodes, notifying them about the new subscriber.
Likewise, subscribers get informed whenever a node unsubscribes from a topic or
becomes unavailable. In this way, the subscriber lists of all subscribers to T remain
up to date.

Whenever a node P wants to publish to the topic T it does the following: (1) it
sends notification messages carrying its publication to all subscribers it knows and
(2) it sends a standard publish call to the RP that also includes information about
the subscribers that the message was already sent to. The additional message to the
RP is necessary for a variety of reasons. Firstly, it can never be guaranteed that P ’s
information on the subscriber set is up to date. P might, for example, have missed
a subscription notification because of routing failures, or an additional subscriber
might have joined the overlay shortly before the publication was sent. Secondly,
in the case of unavailable subscribers, the publications must be persisted for later
recovery. Additionally, PACKs must be generated. In the current design, all those
tasks are carried out by rp(T ), so it is unavoidable that it gets informed about the
publication as well.

Whenever rp(T ) receives P ’s publish call, it first checks whether P was aware of all
currently active subscribers to T . The RP delivers the publication to each subscriber
that was missed by P . Additionally, rp(T ) also sends a subscription notification to
P , informing the publisher about its error and fixing its local view on the subscribers
to T . The information about which nodes a publication was delivered to can be
provided as a list of node IDs or as a hash of all of them. Hashing the node IDs
together makes the publish calls smaller and thus saves bandwidth. However, it also
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Figure 5.3: Direct Publish Mechanism.

makes the design more complex. A simple hashing method is to sequentially apply
XOR on all subscriber IDs, distilling them all to one value. In order to verify P ’s
view of T ’s subscriber set, rp(T ) needs to calculate the same hash from its own
knowledge about the subscribers and compare the result. As an additional feature
of the XOR method, if only one subscriber is missing or wrong in P ’s view (which
is a likely case), the ID of that subscriber can be discovered by applying XOR on
both versions of the subscriber hash. This mechanism can be made arbitrary more
complex to allow the discovery of two, three and more missed nodes, using the two
subscriber hashes and the RP’s knowledge about recent changes to the subscriber
set. If no fit can be found however, the publication must be retransmitted to all
subscribers.

In addition to checking whether P was sent to all of T ’s subscribers, the RP also
generates PACKs for the publication in the same way as it would in the case of a
non-direct publish. Thus, as an important detail, the subscribers that receive P ’s
publication still send their ACK messages to rp(T ), despite the fact that they might
have received it directly from P . Figure 5.3 visualizes this detail as well as the rest
of the direct publish mechanism.

5.5.3 Discussion

The presented improvement to classical i3-style publish/subscribe communication
greatly improves the latency between the publication and the arrival of messages,
by omitting the detour over the RP in most cases, transmitting publication directly
from source to destination. Direct publish can also be used as a foundation for
improving the privacy characteristics of the system, as the amount of information
that is sent to the RP can be restricted at will (at the expense of reliability and
functionality). Lastly, direct publish is also expected to increase the overall resilience
of the system, by shifting responsibility away from centralized RP nodes.

In future designs, additional mechanisms could be developed that shift even more
responsibilities away from individual, randomly chosen RPs. Instead of persisting a
given message or dataset himself, for example, the RP could keep a list of subscribers
that have received it and are storing copies. Interested nodes can then be redirected
to one of those subscribers and request the actual data from them. This setup
is especially interesting for large datasets (like photo albums) and messages with
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private contents. Higher levels of indirection are also possible. For example, the
responsibilities of the official RP for a topic (that is chosen based on its node ID)
can be reduced further, so that it only holds a reference to a node performing the
actual RP functionality. In this way, RPs can be chosen freely, based on criteria like
their location in the underlying network or the amount of social trust between them
and the nodes interested in the topic. This technique would harmonize well with the
use of hierarchical KBR overlays - the RP for a topic of mainly local interest could
be chosen from the node population of the local cluster (keeping the data traffic
local), while still making it possible for external nodes to subscribe and publish. In
combination with the direct publish improvement, approaches like this could also be
developed to realize the social storage idea outlined in Section 5.2.2. However, for
choosing RP and storage locations based on social trust, mechanisms for electing an
RP from a set of publishers and subscribers might additionally need to be devised.

5.6 Social Routing

So far, methods for achieving the core functionality of the SODESSON middleware
have been discussed, together with improvements for a better locality of commu-
nication. The presented solution, however, is still lacking a social dimension as no
specific integration points with the social graph have yet been proposed. This sec-
tion rectifies this oversight. A social routing mechanism will be introduced that
leverages social information for the improvement of overlay routing.

Firstly, two assumptions will be stated that will form the frame for integrating social
information into the KBR component. Following that, an additional data structure
for R/Kademlia will be introduced, that holds information about socially connected
nodes. Ways of filling that data structure will then be elaborated. Lastly, uses for
the gathered social routing data will be discussed, including actual social routing
and the usage of social links for distributing queries independently of standard KBR
logic.

5.6.1 Assumptions

For simplicity, following assumptions will be made for the social network between
users and its basic connection points with the SODESSON middleware:

1. There is only one class of social connections, namely ”friendship”. All friend-
ship links are bidirectional.

2. Each user is aware of all of his friends and their user identifiers. This infor-
mation is present in the SODESSON middleware (e.g. in the storage system)
and all of the user’s devices can access it freely.

The constraint expressed in the first assumption can be relaxed at will without
rendering the presented techniques unfeasible, but at the cost of simplicity. The
realization of the second assumption is trivial and implementation specific. It will
not be elaborated further here.



5.6. Social Routing 53

5.6.2 Social Table

Having established the abovementioned preconditions, an additional data structure
is introduced here - a dedicated social table (or also: social bucket). The social
table of a node holds the overlay IDs of all devices that belong to friends of that
node’s owner. For example, if the users Bob and Alice are friends and both own
one SODESSON-enabled device, then Alice’s device would be included in the social
table on Bob’s device and vica versa. In R/Kademlia’s bucket maintenance logic,
the social table has a lower priority than the sibling table but a higher priority than
ordinary buckets. Thus, in the previous example, if Alice’s and Bob’s devices were
siblings in the overlay, they would be added in each others sibling tables instead of
their social tables. If else, or if they stop being candidates for each others’ sibling
tables, they are always added to their respective social buckets as long as Alice
and Bob remain friends. Only if no other condition applies, i.e. if the two devices
are neither siblings nor belonging to befriended users, are their node IDs added to
ordinary buckets. When routing however, the entries of all three data structures -
sibling table, social table and ordinary buckets - are all treated equally in the current
design.

5.6.3 Friend Node Discovery

There are two basic approaches for filling the social table:

Passive Whenever a node receives a publication directly from the publisher (when
using direct publish), it checks whether the publishing user is a friend of the
receiving node’s owner. If so, the publishing node is added to the social table.
Additionally, a friend device notification is sent to the publishing node. Since
friendship links are assumed to be bidirectional, the publishing node can then
add the subscriber to its own social table as well.

Active In this approach, the identifiers of all devices belonging to a user are stored
in one location in the DHT, namely under the user’s user ID (see Section 5.3.2).
Thus, whenever a device joins the overlay it first adds its own device ID to
this collection. Additionally, it retrieves the node IDs of the devices of both
his owner and that of his owner’s friends. Upon receiving the identifiers, it
sends friend device notification messages to all those devices, informing them
about its own presence. Upon receiving a response from a contacted friend
device, it can be added to the social table. Device entries are persisted only
for a limited amount of time in order to better adapt to churn. Thus, available
devices refresh their own entries periodically by reinserting their own device
IDs into the DHT.

The first method is only applicable in combination with the direct publish mecha-
nism described earlier. Additionally, it does not guarantee that all befriended nodes
will be discovered. More specifically, only befriended nodes with whom communi-
cation occurs will be added to the social table. In the publish/subscribe scenario
however, this would already introduce an improvement, as it increases the probabil-
ity that publishers and subscribers to a topic will be present in each others routing
table (under the assumption that publishers and subscribers to a topic are often
socially connected). This would lead to one-hop distances between publishers and
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subscribes when routing over the overlay which, depending on the implementation,
might greatly improve latencies when using the direct publish mechanism. Finally,
this approach distinguishes itself with its next to nonexistent communication over-
head. The active method of discovering friend nodes, on the other hand, is expected
to induce a relatively high bandwidth consumption. Specifically, all node IDs need
to be stored in the DHT (with all maintenance efforts involved) and accessed and
updated frequently. As a result however, it is expected that the greater majority of
node’s friend nodes will become known shortly after joining the overlay. In addition
to the already mentioned improvements to publish/subscribe performance, this also
enables nodes to form more links in the overlay quicker, leading to a better overall
interconnection and routing performance. Lastly, both presented methods can be
combined, possibly leading to an even higher internal coverage of a node’s friend
nodes set.

5.6.4 Uses for the Social Table

So far, only trivial uses for the additional social table were stated, namely for im-
proving the overall interconnection in the overlay and increasing the chance that
message exchanges with friend nodes (which are likely to occur) will be performed
in one hop. However, those applications of the social bucket only scratch the surface
of what can be done with the additional social intelligence. Following additional
uses for the social table appear promising:

Actual Social Routing Until now, the entries in the social table were not treated
differently than the entries of regular buckets when making routing decisions.
However, friend nodes have a few characteristic differences to nodes with whom
no social connection exist. For one, they are likely to be more trustworthy than
averages nodes, thus making them a better medium for forwarding sensitive
data. In addition, in networks where malicious nodes might exist, the preferred
routing over friendship links might increase the overall stability of the routing.
A routing approach along those lines was already proposed in SPROUT [42].
In the scenario of this thesis however, caution must be taken, as the preference
of social nodes when routing could break the routing layer’s locality charac-
teristics and conflict with strategies like PR, that prefer routing hops based
on their proximity in the underlying network.

Unstructured Flooding over Social Links As demonstrated in [18], unstruc-
tured overlay techniques like flooding loose some of their disadvantages when
restricting the set of queried nodes to only such nodes with whom social con-
nections exist. Following this line of thought, the proposal here is to use the
entries from the social table for the socially-restricted flooding of dynamic ser-
vice discovery queries. For example, if a nodes is interested in a given service
and is looking for a node from its social neighborhood that is offering it, it
can simply flood its request over the entries from its social table and wait for
replies. Nodes receiving the query can pass it on to their friend nodes, us-
ing standard flooding techniques to restrict the spread of the request and to
avoid loops. The socially restricted flooding technique could be additionally
enhanced for considering locality characteristics as well, i.e. flooding only over
socially connected nodes that are also nearby in terms of underlying network
proximity.
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Unfortunately, the more in-depth discussion of those approaches would exceed the
scope of this thesis. Their further development is left as a subject for future work.

5.7 Summary

The presented design is based on the KBR overlay R/Kademlia in combination
with a publish/subscribe system strongly resembling i3. Standard DHT mechanics
are used for realizing the persistent storage of most types of data. Additionally,
a storage interface based on the publish/subscribe pattern is proposed. For the
addressing of users and devices, the generation of random IDs is suggested and
ways for mapping between the identifier groups have been elaborated. Concerning
the delay-tolerant delivery of messages, a system based on pending acknowledgement
(PACK) objects is proposed. For each publication and each peer that needs to receive
that publication, one PACK is generated, that can be used for triggering delivery
attempts and gets persisted in the DHT until a corresponding ACK is received.
In addition to this core functionality, an approach for improving the locality of the
publish/subscribe subsystem is suggested. Namely, the direct passing of publications
between publishers and subscribers without taking a detour over the RP. Lastly, an
additional social table is introduced for R/Kademlia that holds devices belonging to
befriended users and thus forms an integration point for information from the social
graph.

Apart from those specific propositions, several other suggestions were made that
could not be developed in greater detail. These include the usage of an additional,
unstructured storage system for dealing with larger datasets and sensitive data, the
employment of cryptographic methods for generating user and device addresses and
the usage of information from the social table for influencing routing decisions and
enabling the unstructured flooding of queries in the social neighborhood.
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6. Implementation

In addition to the analytical work in this thesis, a prototype of the proposed system
was implemented. The goal was to enable the evaluation of the suggested designs
in a simulated environment and to verify the general feasibility of the approach.
Additionally, the development of reusable components for the use in future research
efforts was desirable.

The solution was implemented using the overlay simulation framework OverSim
[7] introduced in Section 2.4. The architecture of the framework will be described
firstly, focusing on the integration points of the developed modules and giving an
overview of the relevant folders in OverSim’s directory structure. Following that,
new components will be introduced that facilitate the evaluation of user-centric
applications. Additionally, the design and implementation of a test application
for the SODESSON middleware will be outlined. Then, the actual SODESSON
prototype will be introduced, focusing on its module structure and elaborating a
set of implementation-specific particularities. Details about the new social table in
Kademlia will be discussed next. Lastly, an additional number of smaller changes
and additions to the OverSim codebase will be listed.

During the implementation of the prototype, several small bugs and inconsistencies
were discovered in existing OverSim components. They will not be discussed further
here, but patches containing fixes have been made available on the CD accompanying
this thesis.

6.1 OverSim Simulation Framework

As mentioned earlier, one of the main advantages of the overlay simulation frame-
work OverSim [7] lies in its modular, layered architecture. Existing components can
be reused and combined to a great extent, a fact that was leveraged extensively
while implementing the discussed prototype. For example, both an R/Kademlia
and a DHT component were available for the use in this work and were leveraged
to provide core functionality to the developed system. Figure 6.1 depicts OverSim’s
layered architecture and a selection of key modules. SODESSON-related compo-
nents are inserted in this diagram as well, to give a sense of perspective about how
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they integrate with the rest of the framework. The global observer module dealing
with users is new as well and will be described in subsequent sections.

The architecture of OverSim can be divided into three main layers that reside on
top of one another. Starting from the bottom, the underlay layer simulates real
IP networks upon which overlay designs can be spanned. Several underlay network
models exist for OverSim that offer a variable degree of realism. For this thesis, the
SimpleUnderlay module is used. It offers a rudimentary approximation of a IP rout-
ing topology that is sufficient for the goals of this thesis and allows the simulation
of large networks, due to its low impact on simulation performance. OverSim’s un-
derlay layer is also responsible for spawning and removing network nodes according
to predefined patters. This work is done by dedicated churn generators. For this
thesis, LifetimeChurn generators are used in all simulations, that spawn and remove
nodes based on the time they spent in and out of the network.

Moving higher, the overlay layer sits on top of the underlay and implements the ac-
tual decentralized networking behavior. KBR protocols like Kademlia and Bamboo
reside in this layer. For the presented implementation, the Kademlia module is used,
with parameters set so that it behaves like R/Kademlia with an additional sibling ta-
ble (as described in Section 5.1.1). The main task of the overlay layer is to provide a
unified routing abstraction to higher components. Members of the application layer
can then be developed independently from individual overlay approaches. The uni-
fied overlay API is defined in the BaseOverlay class (src/common/BaseOverlay.h).
All overlay implementations inherit from this class.

Arriving at the application layer, an additional division into tiers can be made,
with higher tiers relying on the functionality of lower ones. In the presented im-
plementation, the actual SODESSON middleware is at the second tier. It uses a
DHT component at tier 1, but can also communicate directly with the KBR overlay.
Actual SODESSON applications reside at tier 3.

Several supportive components exist that can not be clearly associated with any
of the presented layers. Out of those, the GlobalObserver category of modules is
especially relevant for this work. Global observers are unique entities that form a
supportive frame for the simulation environment, by collecting and disseminating
global knowledge. Important global observers are for example the GlobalStatistics
observer, that collects and processes statistical information from all modules, and
the GlobalNodeList, that tracks all nodes currently residing in the overlay. In this
work, an additional global observer module was implemented that generates user
entities and a social network between them, thus delivering a frame for user-centric
networking simulations. The module will be introduced in greater detail in Section
6.2.1.

On a more practical level, Figure 6.2 shows the portion of OverSim’s directory
structure that is relevant for understanding the presented implementation effort.
Those are also the paths under which modifications were made in the course of this
work.

6.2 User Model and User Behavior

Before presenting the actual SODESSON prototype, components required for es-
tablishing a suitable simulation scenario will be described first. Specifically, new
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Figure 6.1: OverSim architecture with SODESSON-related modules (original dia-
gram from [7]). New components are encircled in blue, components where modifi-
cations occurred are encircled in violet.
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src/
│ 
├── applications   
│   ├── dht
│   └── sodessontestapp
│   
├── common
│   ├── simpleunderlay
│   └── usercentric
│
├── overlay 
│   └── kademlia
│   
├── tier2
│   └── sodesson
│
├── tier3
│ 
└── underlay
    └── simpleunderlay

Figure 6.2: Relevant paths in OverSim’s source directory.

src/common/usercentric/
├── BaseLocation.h
├── DeviceInfo.cc
├── DeviceInfo.h
├── GlobalUserObserver.cc
├── GlobalUserObserver.h
├── GlobalUserObserver.ned
├── UserInfo.cc
└── UserInfo.h

Figure 6.3: Source directory of the new user-centric networking components.

modules enabling the simulation of user-centric networking scenarios will be intro-
duced, together with a test application for SODESSON that models the behavior
and usage patterns of a generic instant messaging application. Additionally, modi-
fications enabling the deliberate clustering of nodes in the underlying network will
be presented.

6.2.1 User-centric Networking Support

Several additions to the OverSim framework were required for the establishment
of a user-centric simulation environment. For one, the notion of users had to be
introduced, together with a way of expressing social connections between them.
Based on this, ways of actually generating users and a social graph had to be devised
and the user-related information had to be made available to interested components.
In the context of the SODESSON middleware, an internal mapping between users
and devices was required as well.

In the presented implementation, these tasks are handed by a novel GlobalUserOb-
server and a few related modifications. Figure 6.3 shows the directory containing the
discussed additions. The BaseLocation class (defined in BaseLocation.h) is currently
not required for providing user-centric networking functionality, but may be used in
the future for tying individual users to locations in the underlying network (see also
Section 6.2.3). UserInfo and DeviceInfo objects (defined in UserInfo.h and Device-
Info.h, respectively) are used internally for representing users and devices. Amongst
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other things, UserInfo objects store the list of friends for each user and a list of
DeviceInfo objects for the devices it owns. DeviceInfo objects hold only a device’s
overlay ID and a flag denoting its availability status. Upon startup, the actual Glob-
alUserObserver generates a number of UserInfo objects equal to the number n of
nodes in the system, as set in the OverSim configuration. LifetimeChurn generators
are used in all SODESSON simulations, with the average lifetime of nodes equalling
the time they spent offline. Additionally, the reentry of nodes is configured, so that
in effect only 2 ∗n distinct nodes are generated during the course of one simulation.
Conclusively, by setting the number of users equal to n, every user will be mapped
to, on average, two devices, which is deemed a realistic constellation. The actual
connection of devices to users is done whenever a node (re-)enters the overlay. Upon
receiving its overlay ID, the node calls the observer’s getUser() function, passing it
its newly learned identifier. The observer module then checks if a previous associa-
tion with a user exists and creates one if not (choosing the new owner randomly).
Listing 6.1 contains the definition of the GlobalUserObserver class, from which more
elements of its public API can be seen.

class GlobalUserObserver : public cSimpleModule
{
public :

GlobalUserObserver ( ) ;
˜ GlobalUserObserver ( ) ;

User In fo ∗ getUser ( const OverlayKey& user Id ) ;
User In fo ∗ getRandomUser ( ) ;
User In fo ∗ getRandomFriend ( const OverlayKey& user Id ) ;

User In fo ∗ r e g i s t e r D e v i c e ( Dev ice In fo& dev i ce ) ;
DeviceVector g e t S i b l i n g D e v i c e s ( const OverlayKey& dev i c e Id ) ;
DeviceVector getFr i endDev ices ( const OverlayKey& dev i c e Id ) ;

bool i sFr i endDev i c e ( const OverlayKey& deviceIdA ,
const OverlayKey& deviceIdB ) ;

protected :
virtual void i n i t i a l i z e ( ) ;

private :

void doGenerateFr iendships ( ) ;

UserVector u s e r s ; // a l l UserInfo o b j e c t s
UserMap userMap ; // user Id −> UserInfo

KeyMap deviceOwnershipMap ; // d e v i c e I d −> user Id
} ;

Listing 6.1: GlobalUserObserver class (src/common/usercentric/GlobalUserObserver.h).
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src/applications/sodessontestapp/
├── GlobalSodessonTestObserver.cc
├── GlobalSodessonTestObserver.h
├── GlobalSodessonTestObserver.ned
├── SodessonTestApp.cc
├── SodessonTestApp.h
└── SodessonTestApp.ned

Figure 6.4: Source directory of the SODESSON test application.

An additional key responsibility of the GlobalUserObserver class is the generation
of a social network between users. This, too, happens during initialization, shortly
after generating the actual user set. For the generation of the social network, a
small-world graph generation algorithm is being used, namely the one proposed by
Watts and Strogatz in [49]. As proposed in previous chapters, only one class of
social connections is used at this level - friendship. For the parameter K of the
Watts’ and Strogatz’ algorithm (denoting the average amount of connections per
user), the value 100 is chosen. The number is inspired by the median friend count
measured in the Facebook online social network, which is 99 [47]. The parameter β
(that specifies the randomness of the graph) was set to 0.05. This yields a clustering
coefficient of about 0.8 - a value likely to be found in real social networks1. In this
way, the technique produces fairly realistic interconnection patterns between users.

6.2.2 SODESSON Test Application

For verifying the functionality of the developed prototype and evaluating its per-
formance, a test application was implemented as one of the first steps in the devel-
opment process. Figure 6.4 gives an overview of the component’s source directory.
The test functionality is realized by two core modules - the actual SodessonTestApp
and an additional GlobalSodessonTestObserver.

The SodessonTestApp was designed to simulate the behavior and usage patterns of
a generic instant messaging application. Instances subscribe to a set of topics and
publish short messages to them at random intervals. The GlobalSodessonTestOb-
server acts as a point of reference, by noting all published messages and helping the
SodessonTestApp instances to register missed publications. The information from
the global observer is used for statistical purposes, for calculating the ratio of cor-
rectly received publications. Additionally, for direct messages, i.e. messages where
both sender and receiver were available at the time of sending, the latency between
the initial publish and the receive by the subscriber is measured and recorded.

For the simulations in this thesis, the parameters for the SODESSON test applica-
tion were chosen with the goal of providing a close approximation of real instant
messaging traffic. A snipped from OverSim’s configuration file that shows the pa-
rameters of the component can be seen in Listing 6.2. The average send period of 200
seconds was inspired by a paper by Avrahami and Hudson [3], where an average of
17.6 messages per hour was measured for participants in a study on instant messag-
ing behaviour. The maximum number of subscriptions (maxNumSubscriptions), i.e.
the maximum number of topics that a node will be subscribed to simultaneously, is
also derived from the results of that study. From the authors’ data, an average value

1A clustering coefficient of 0.8 is found for example in collaboration graphs of film actors, which
are common surrogates for social graphs [49].
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of seven instant messaging sessions per day can be derived2. Thus, subscriptions to
seven topics were also assumed for SodessonTestApp instances (the implementation
is such, that test application instances always subscribe to the maximum number
of topics that they are allowed to). The length of the instant messages sent by
the test application is constant and hardcoded to a value of 68 characters. This
number reflects the average of 13.5 words per instant message measured in [25] and
the assumption of an average of 5 characters per word in an ordinary English text.
The value for the receiveTimeout parameter is arbitrary, additional evaluations will
be made to determine the messaging delays of the solution. Lastly, the parameter
chooseTopicsSocially enforces that a node subscribes to only such topics where all
other subscribers are friends to the node’s owner. This reflects the assumption that
only befriended users will engage in instant messaging conversations.

∗∗ . t i e r 3 ∗ . s odes sonte s tapp . averageSendPeriod = 200 s
∗∗ . t i e r 3 ∗ . s odes sonte s tapp . maxNumSubscriptions = 7
∗∗ . t i e r 3 ∗ . s odes sonte s tapp . rece iveTimeout = 120 s
∗∗ . t i e r 3 ∗ . s odes sonte s tapp . choo s eTop i c sSoc i a l l y = true

Listing 6.2: SodessonTestApp configuration (simulations/omnetpp.ini).

6.2.3 Clustering of Nodes in the Underlying Network

To model the assumption that the devices of socially connected users are often
also close to each other in the underlying network (a claim backed, to some ex-
tent, by the results in [47]), modifications to the LifetimeChurn churn genera-
tor were made so that the underlay positioning of created nodes could be influ-
enced. Specifically, the coordinates of a point in the SimpleUnderlay’s synthetic
coordinate system (used, for example, for calculating delays) can now be passed
to the component, together with a maximum round-trip time (RTT). Node loca-
tions in the underlay network are then generated randomly in the proximity of
that point, so that the RTT between each two nodes placed in this way does not
exceed the preconfigured value. Thus, the described modification enables the clus-
tering of nodes in the proximity of a specific location. Listing 6.3 shows a code
snipped demonstrating the generation of node coordinates in this approach (for
useLocations = true). The variables locationsCenterX and locationsCenterY re-
flect the coordinates set in the configuration file, while the locationsScatterRadius
is calculated from the desired maximum RTT. The createNode functions of the
UnderlayConfigurator (src/common/UnderlayConfigurator.h) and SimpleUnderlay-
Configurator (src/common/simpleunderlay/SimpleUnderlayConfigurator.h) had to
be modified as well, to support the passing of specific coordinates at which the
created node should be placed.

TransportAddress∗ ta ;
i f ( useLocat ions ) {

NodeRecord∗ l o c a t i o n = new NodeRecord ( ) ;

2By calculating the number of sessions recorded per hour (Total Sessions / Total Hours
Recorded) and multiplying it with the average number of hours recorded per participant per day.
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l o ca t i on−>coords [ 0 ] =
uniform ( locat ionsCenterX−l o ca t i on sSca t t e rRad iu s ,

locat ionsCenterX+l o c a t i o n s S c a t t e r R a d i u s ) ;

l o ca t i on−>coords [ 1 ] =
uniform ( locat ionsCenterY−l o ca t i on sSca t t e rRad iu s ,

locat ionsCenterY+l o c a t i o n s S c a t t e r R a d i u s ) ;

ta = under layConf igurator−>
createNode ( createType , i n i t i a l i z e , l o c a t i o n ) ;

} else {
ta = under layConf igurator−>

createNode ( createType , i n i t i a l i z e ) ;
}
Listing 6.3: Clustering of nodes around a previously specified set of coordinates
(src/common/LifetimeChurn.cc).

6.3 SODESSON Component

In the presented implementation, the actual SODESSON middleware resides at tier
2 in OverSim’s layering logic. It employs a standard DHT implementation with
sibling replication for all of its storage needs. The used DHT component was already
part of the OverSim framework. In the given test scenario, all stored applications
messages have sizes below the kilobyte range. Thus, the usage of a DHT as the
exclusive storage system is acceptable, as discussed earlier. Mechanisms for dealing
with larger files, e.g. through means of distributing data on socially connected and
local nodes, were not implemented. On the overlay layer, the developed prototype
uses OverSim’s Kademlia module, with parameters set so that it behaves like an
R/Kademlia implementation with an additional sibling table.

6.3.1 Module Structure

Figure 6.5 depicts the directory containing the actual developed SODESSON imple-
mentation. The architecture of the prototype is such that a clear separation between
client and RP-related functionality exists. Consequently, all client-related function-
ality is encapsulated in the SodessonClientModule class3. It is also in this class that
the communication with SODESSON applications is handled. RP-related function-
ality is encapsulated in SodessonRPModule. This separation of functionality aims at
a higher clarity of design and is purely organisational. From the standpoint of Over-
Sim, there is only one SODESSON module, namely the one defined by the Sodesson
class. Thus, all responsibilities concerning the communication with other OverSim
components is concentrated in this main module. It provides send functionality to
its submodules and forwards them messages from other OverSim components.

In addition to the discussed classes, a number of SodessonEntry classes can be found
in the presented source tree, e.g. SodessonSubscriptionEntry. Those classes serve the

3Unless otherwise noted, classes in this section are always implemented in the source files with
the same name.



6.3. SODESSON Component 65

src/tier2/sodesson/
├── Sodesson.cc
├── Sodesson.h
├── Sodesson.ned
├── SodessonAckEntry.cc
├── SodessonAckEntry.h
├── SodessonClientModule.cc
├── SodessonClientModule.h
├── SodessonContactManager.cc
├── SodessonContactManager.h
├── SodessonMessage.msg
├── SodessonPublicationEntry.cc
├── SodessonPublicationEntry.h
├── SodessonRPModule.cc
├── SodessonRPModule.h
├── SodessonSubscriptionEntry.cc
├── SodessonSubscriptionEntry.h
├── SodessonTopicEntry.cc
└── SodessonTopicEntry.h

Figure 6.5: Source directory of the SODESSON prototype.

internal representation of data and, in several cases, also encapsulate data objects
that need to be stored in the DHT. The file SodessonMessages.msg holds the different
message types employed by SODESSON. The SodessonContactManager module is
currently only a placeholder and is not being used. Information about a node’s social
context, i.e. its owner and the friend users of that owner, is retrieved directly from
the GlobalUserObserver by components that require it.

6.3.2 Particularities of the Implementation

In the remainder of this section, non-trivial implementation details of some SODES-
SON components will be discussed. This includes the initialization of new RPs,
the detection of unavailable subscribers, the PACK mechanism and the storage of
arbitrary data objects in the DHT.

6.3.2.1 RP Initialisation

Whenever a node joins the overlay, it can happen that it immediately becomes
responsible for a given topic T (due to its overlay ID). In such cases, publications
and other requests to the RP might arrive at the new node before it has had a chance
to fully complete the join process. Specifically, the node might still be unaware of
some of its overlay siblings and it might not yet have received the DHT entries
corresponding to T (being the RP for T , it is also the responsible DHT node for
datasets associated with that topic). When handling publish requests, such cases
manifest itself in the fact that, upon requesting all subscribers from the DHT (in
order to properly disseminate the message), the RP component does not receive
any datasets in return. When this happens, the current implementation does not
respond to the publish request. The publish is then retried by the SODESSON
client component at the publishing node, with exponentially increasing intervals
between publish attempts. Eventually, the RP becomes fully initialised and the
publish succeeds.

6.3.2.2 Detection of Unavailable Subscribers

The detection of failed or otherwise departed nodes is handled by registering failed
message deliveries. In OverSim, the latter is usually handled by the RPC subsystem
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with it’s built-in acknowledgement and timeout mechanisms. In the present scenario
however, the available RPC mechanisms do not work, for following reasons:

• SODESSON messages are always sent to overlay keys instead of individual
underlay addresses.

• When routing a message to a specific node ID, and the node belonging to that
ID is currently not available, the message is instead delivered to the overlay
node whose address is closest to the destination key.

• With the current implementation, this accidental receiver is not aware of the
original destination ID of the message and thus processes it normally. Specif-
ically, it also sends a normal reply to the sending node.

• Since the sending node has received a reply (acknowledgement) for its mes-
sage, it cannot tell that the real destination node is actually not available.
Specifically, the processing of replies is handled by the RPC subsystem and,
again, does not compare the real target key with the ID of the receiver.

So, the detection of unavailable SODESSON nodes by SODESSON components
would require a partial rewrite of OverSim’s RPC subsystem. Namely, an additional
sending mode must be implemented that enforces the routing of a message to a
specific overlay ID, returning an error if no node with this specific key is found.
Here however, a different workaround to this problem was devised that was easier
to implement. The following was done:

• SODESSON messages typically targeted at clients, for example notification
messages, were equipped with an additional destID field holding the target
node’s overlay ID.

• With this additional field, the SODESSON client can verify whether it is the
real destination of a message.

• If not, it still sends a normal reply to the sender (to obey OverSim’s RPC
logic), but also sends a NodeFailNotification message to the RP corresponding
to the topic that the received message is associated with.

All NodeFailNotification messages for subscribers to a specific topic are gathered at
that topic’s RP. The RP stores a counter for each subscriber it has received NodeFail
messages for. The counter is incremented for each received fail message and gets
reset whenever a message by the respective subscriber arrives. Once the fail counter
reaches a certain value (here, 8 was chosen), the subscriber is marked as inactive in
the DHT and no more notifications are sent to it until it resubscribes or otherwise
demonstrates that it is active.

6.3.2.3 PACK Mechanism

As an important element of the PACK mechanism, the PACKs for all currently ac-
tive subscribers must be known by the RP, and the transmission and retransmission
of publications must be triggered based on those PACKs. In the present implemen-
tation, this is handled by maintaining a dedicated PACK cache for each topic that
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the RP is responsible for. The cache is filled with AckCacheEntries representing
pending acknowledgements for currently active subscribers. Every cache entry is as-
sociated with a timer, for timing periodic delivery attempts. The PACK for a topic
gets filled immediately after a node learns it is responsible for that topic. After that,
new PACKs are retrieved from the DHT whenever a node subscribes or becomes
active after a period of inactivity, as in both cases publications could be pending
for it. Lastly, all PACK caches maintained by a node are updated periodically as
well, by first getting all active subscribers for each topic from the DHT and, based
on that, all currently relevant PACKs. Depending on the configuration of the DHT
component, this periodic updating might generate a lot of extra traffic. A better
way for the RP to stay updated about changes in the DHT is for the DHT to notify
the RP component whenever changes to some of its datasets occur. However, this
was not easily realizable at the time of implementation and thus not done.

6.3.2.4 Storage of Arbitrary Data Objects in the DHT

On many occasions, the presented SODESSON prototype needs to store complex
data objects in the DHT, e.g. PACK entries or subscription entries with extra in-
formation like the availability status of the subscriber. With the currently available
DHT implementation however, only the storage of BinaryValue objects is possible,
which are, in essence, strings. Thus, an rudimentary serializer was integrated into
all classes whose objects needed to be storable in the DHT. Listing 6.4 demon-
strates the used technique (dubbed the poor man’s serializer) as implemented in the
SodessonSubscriptionEntry class. The pack() function basically outputs the object’s
data to a string using standard C++ streams. Its counterpart, unpack(), can then
reconstruct the original object from that string. A more complex example of this
technique can be found in the implementation of the SodessonAckEntry class.

// poor man ’ s s e r i a l i z e r
BinaryValue SodessonSubscr ipt ionEntry : : pack ( ) {

std : : s t r ing s t r eam ss ;
s s << s u b s c r i b e r . t oS t r i ng (16) << endl ;
s s << i s A c t i v e ;

return BinaryValue ( s s . s t r ( ) ) ;
}
void SodessonSubscr ipt ionEntry : : unpack ( const BinaryValue& v ) {

std : : s t r ing s t r eam ss ;
s s << v ;

std : : s t r i n g s u b s c r i b e r s t r i n g ;
s s >> s u b s c r i b e r s t r i n g ;
s u b s c r i b e r = OverlayKey ( s u b s c r i b e r s t r i n g ) ;

s s >> i s A c t i v e ;
}

Listing 6.4: Basic serializer (src/tier2/sodesson/SodessonSubscriptionEntry.h).
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src/
│
├── common
│   ├── BaseOverlay.cc
│   └── BaseOverlay.h
│
└── overlay
    └── kademlia
        ├── Kademlia.cc
        └── Kademlia.h

Figure 6.6: Files modified in the course of implementing social routing functionality.

6.4 Social Routing Additions

This section describes the implementation effort of integrating social information into
OverSim’s overlay routing layer. Figure 6.6 shows the locations of the performed
modifications. The made changes are limited almost exclusively to the Kademlia
module, where a social table was added in accordance to Section 5.6. The modifi-
cations in BaseOverlay.h and BaseOverlay.cc reflect changes to OverSim’s generic
overlay API that were required by the new social components and were deemed useful
for further efforts into implementing social routing mechanisms. Most importantly,
those changes include the introduction of the addFriendNode() function, a function
that can be used to inform the overlay about devices belonging to befriended users.

In the previously introduced SODESSON component, the addFriendNode() function
is called in following cases:

• A notification message about a publication is received directly from the pub-
lishing device and the publishing user is a social contact.

• In configurations where all devices store their IDs in the DHT, under their
owner’s user ID as was suggested previously, every node that joins the overlay
immediately requests the addresses of all devices belonging to its owner and
to friends of its owner. Node addresses received from the DHT as a result of
this query are all passed to addFriendNode().

• In the former scenario, where the IDs of befriended devices can be retrieved
from the DHT, FriendDeviceNotification messages are sent to all devices dis-
covered in this way. In this way, nodes are notified whenever a new befriended
device becomes available and can pass this information on to the overlay.

The modified R/Kademlia implementation reacts to addFriendNode() calls in two
ways. Firstly, it inserts the node ID in question into the friendDevices set, a data
structure holding the overlay identifiers of all known befriended nodes. Secondly, it
checks whether the new friend device is already present in some ordinary Kademlia
bucket. If it is, it is moved to the social table. The friendDevices set is extensively
used in Kademlia’s routingAdd() function, where the decision is made in which
bucket a given overlay neighbor must be put. After gathering all socially connected
nodes in the social table however, they are still treated in the same ways as normal
nodes, e.g. when routing messages.



6.5. Other Modifications and Additions 69

6.5 Other Modifications and Additions

In addition to the already mentioned changes, a number of smaller modifications
and additions to the OverSim codebase were made:

• In the DHT module, additional statistical functions were implemented that
categorize messages based on the SODESSON data types they are associated
with (a put call on a subscription entry is associated with a subscription entry,
for example). The messages are then logged in such a way that, in the end,
the amount of DHT traffic that each individual SODESSON data type induces
can be seen in the simulation output.

• The GlobalStatistics module was enhanced by the possibility of generating
quantile histograms, through the statistical class cPSquare provided by OM-
Net++. The new GlobalStatistics function is called recordPSquare() (defined
in src/common/GlobalStatistics.h).

• Kademlia and the GlobalNodeList component were modified to support the
evaluation of the status of Kademlia’s sibling table. It is now possible to log the
sibling table’s completeness as a function of time, i.e. the percent of a node’s
real siblings that are registered in the node’s sibling table. This functionality is
optional and can be activated by setting Kademlia’s new siblingReportInterval
parameter.

• A new plotting tool was implemented based on the plot.py script (simulation-
s/tools/plot.py) available in OverSim. The new program, barplot.py (simula-
tions/tools/plot.py), is invoked similarly to plot.py but produces bar diagrams
instead of normal plots.

6.6 Summary

In this chapter, an implementation of the previously developed concepts and mech-
anisms was presented, using the OverSim simulation framework. In addition to
the implementation of an actual SODESSON component providing user-centric net-
working functionality as proposed in Chapter 5, several modifications to OverSim
were made to create a suitable simulation environment for user-centric networking.
Specifically, user entities were introduced and a mechanism was implemented for
generating a social network between them. The clustering of nodes around pre-
viously specified locations in the underlying network was made possible and a test
application for SODESSON was developed, that models user behavior in the context
of an instant messaging application. Previously discussed improvements to SODES-
SON’s basic design, namely the direct publish modification and the introduction of a
social table to R/Kademlia, were integrated into the implementation as well. Lastly,
several smaller changes and additions were made to existing OverSim components,
mostly related to the collection of statistical data.
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7. Evaluation

For the evaluation of the designs presented in Chapter 5 and their implementation
in Chapter 6, a set of simulation studies was performed in the overlay simulation
framework OverSim. The studies were performed with following goals in mind:

• To discover good parameter combinations for the different system components.

• To evaluate the basic feasibility of the solution to act as a foundation for the
SODESSON middleware.

• To further evaluate the performance of the approach and the impact of the
different modifications proposed for it.

Based on these goals, four groups of simulations were performed: a pure DHT study
to determine good parameters for the DHT component, a small exemplary study
with the SODESSON prototype to assess its core properties and, lastly, two larger
studies with the SODESSON implementation to aid the comparison of the proposed
modifications and demonstrate the behavior of the solution in larger node popula-
tions. The four simulation families will be discussed extensively in the remainder
of this chapter. First, however, invariant aspects of the simulation setup will be
elaborated and some common terminology and abbreviations used for presenting
the simulation results will be introduced.

7.1 Common Simulation Parameters and Termi-

nology

The simulations in this thesis were run using the SimpleUnderlay underlay abstrac-
tion, as noted previously. The SimpleUnderlay network model is based around
a synthetic coordinate system for calculating communication delays. In this work,
node coordinates were generated based on real Internet latency measurements, using
the Skitter [24] datasets provided by the CAIDA [13] project. In all simulation runs,
20000 seconds of activity were simulated and observed, with additional initialization
and transition phases in the beginning of each run during which no measurements
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occurred. For each evaluated parameter combination, 5 simulation runs with dif-
ferent seeds (for OverSim’s random number generator) were performed. The sizes
of the simulated networks were varied across simulation studies and individual con-
figurations. An average number of simultaneously active nodes was configured for
each run, with the actual node population fluctuating slightly due to churn.

Unless otherwise noted, all simulations in this chapter were run in conditions of
moderate churn. Namely, OverSim’s LifeTimeChurn churn generator was used with
an average life and dead time of 10000 seconds. Based on the measurements taken
for the KAD network in [45] and [43], this value is estimated to reflect realistic
average user behavior. Whenever nodes leave the system, they do so in a non-
graceful way, i.e. without notifying their peers. The reentry of nodes is configured,
so that whenever a dead node gets recreated, it retains its old node ID. At the
beginning of each simulation, a user population is generated as described in Section
6.2.1. Like stated there, the size of the user population equals the configured number
of simultaneously active nodes, resulting in an average of 2 devices per user.

Unless otherwise noted, presented statistical variables are always related to single
nodes. So, if a value like Bytes Sent/s is given, for example, it denotes the amount
of bytes that each individual node in the simulation sends on average. Result values
were produced by averaging between all simulation runs performed for a given pa-
rameter combination. Also, confidence intervals were calculated based on the values
from those runs. All confidence intervals specified in this thesis represent a 95%
confidence level.

When visualizing the results, a few abbreviations are additionally used for denoting
different parameter combinations. DP signifies the activation of the direct pub-
lish mechanism introduced earlier. ST denotes the existence of a social table in
R/Kademlia, with active and passive in this context referring to the two approaches
for discovering befriended nodes. Also, the terms undelayed and delayed are used,
for describing different types of publications. With undelayed publications, both the
subscriber and the publisher of a message are available at the time of publication
so the message is transmitted directly, i.e. without persisting it in the DHT. De-
layed publications, on the other hand, are persisted by the RP because of inactive
subscribers and get delivered once their destination nodes become available.

7.2 Selection of DHT Parameters

Before the actual evaluation of SODESSON, a preliminary study of the DHT com-
ponent was performed to determine good configuration parameters for the DHT and
KBR modules.

7.2.1 Simulation Setup

Above all, the goal of this study was do determine a suitable value for the number
of siblings s. This number determines the size of the KBR component’s sibling
table and also tells the DHT how many replicas of its datasets it should create.
Two studies were performed in this context, using R/Kademlia, OverSim’s standard
DHT implementation and the DHTTestApp included in OverSim. The parameters
of the test application were set to resemble the expected DHT usage patterns of the
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Figure 7.1: DHT parameter selection: variation of the number of siblings s. The
number of siblings contacted for each request is also s. 0.5 · s equal replies are
required for a get request to succeed.

SODESSON prototype and the SodessonTestApp. All simulations were performed
for a population of 10000 nodes. The results in this section were plotted using scatter
diagrams. Each point in these plots represents one parameter combination. The x
and y coordinates of the point correspond to the values of two statistical variables
measured for its respective configuration. In this way, scatter plots can give a sense
for the performance versus cost ratios of the presented parameter combinations, by
choosing the plotted variables accordingly. Often, they are thus also referred to as
performance versus cost diagrams.

7.2.2 Results

Figure 7.1 shows the results of the first simulation study. Here, only the parameter
s was varied as described earlier. For each DHT get request, s siblings had to be
contacted. From these s contacted siblings, 0.5 · s had to reply with the same value
for the get request to succeed. The result diagram clearly shows that 3 and 5 are
good candidate values for s, while s = 15 induces an extra amount of bandwidth
overhead that is disproportionate to the success ratio increase it induces. Based
on these insights and the fact that simulations with s = 15 run significantly slower
than the other configurations, the parameter combination s = 15 was omitted in the
second study.

The second group of simulations evaluates more fine-grained configurations of the
DHT component. Namely, the numGetRequests parameter of the DHT component
was altered as well. In the following, it will be denoted only as nr. The nr config-
uration variable denotes the number of individual requests a get call induces. For
example, if nr = 3, the responsible node and 2 of its siblings are contacted when
performing the operation. Clearly, it always holds that nr ≤ s. In the performed
simulations, from the nr nodes being contacted, 0.5 · s need to reply equally for
a request to succeed. If nr < 0.5 · s, then only nr contacted nodes need to reply
equally instead. So, for example, for (s = 7, nr = 5), 4 equal replies need to be
received, while for (s = 7, nr = 3), 3 equal replies are sufficient. For nr = 1, the
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Figure 7.2: DHT parameter selection: variation of the number of siblings s and the
number of requests per get operation nr (the number of contacted nodes). 0.5 · s or
nr equal replies are required for a get request to succeed, whatever is lower.

answer of the queried node is always assumed to be correct by the querying node.
Figure 7.2 shows the results of the study.

Looking at the resulting plots, the combinations (s = 3, nr = 1) and (s = 5, nr =
1) appear most promising, i.e. having the best cost versus performance ratios.
However, the former configuration has a significantly lower bandwidth overhead than
the latter, with a just slight decrease in reliability. Resting on the assumption that
a success rate increase of less than 0.2% does not justify a doubling of bandwidth
consumption (a total increase of about 1000 bytes per second), (s = 3, nr = 1) is
thus the better candidate configuration for the DHT component. On a side node,
the contacting of only one node per get request raises serious security concerns, as
this node could be malicious. In the current SODESSON design however, the main
querier of the DHT are nodes acting as RPs and, again, only one RP is contacted
in all SODESSON mechanisms. Thus, this problem should first be addressed in the
SODESSON layer. Additionally, when nr = 1, an RP does not have to make any
requests to other nodes at all, as he is always also the main DHT replica location
for the datasets it requires.

7.2.3 Conclusion

Based on two simulative studies of the DHT component, the parameter combination
(s = 3, nr = 1), i.e. 3 overlay siblings per node of which one is contacted during each
get operation, was determined as best for the current prototype of the SODESSON
middleware. All subsequent simulations in this chapter were performed with this
DHT configuration.

7.3 Basic Feasibility

In this section, the question will be answered whether the developed prototype rep-
resents a valid solution to the problems stated previously. The reliability, latency
and bandwidth consumption of the developed solutions will be assessed for an ex-
emplary network size of 1000 nodes. Basic characteristics of the prototype and its
different configurations will be noted based on the results.
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Figure 7.3: Exemplary simulation results for a network with 1000 active SODESSON
nodes (on average) and moderate churn. DP denotes whether the direct publish
modifications are active. ST signifies the usage of a social table in R/Kademlia,
with active and passive representing the two approaches for discovering befriended
nodes.

7.3.1 Simulation Setup

Various possible configurations of the developed prototype were simulated in a ex-
emplary scenario with a node population of 1000 nodes (on average). SODESSON
and SodessonTestApp instances were running on all nodes. The parameters for
the DHT component at each node were set as described in the last section. The
SODESSON parameters being evaluated are marked in the result diagrams using
the abbreviations introduced in Section 7.1.

7.3.2 Results

Two simulation studies were performed - one with moderate churn and one without
any churn at all (using OverSim’s NoChurn churn generator). The results of the
two studies can be seen in Figures 7.3 and 7.4, respectively.

7.3.2.1 Delivery Ratios

From the results of the simulations with churn, it can be seen that the average suc-
cess ratio of publications is below 100%. For every 20 messages a node receives,
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Figure 7.4: Exemplary simulation results for a network with 1000 active SODESSON
nodes and no churn. Parameter names as in Figure 7.3.
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it misses one. As can be seen from the comparison with the results from Figure
7.4, these losses are mainly due to churn. Mostly, they are caused by the following
situation that was not accounted for sufficiently in the implementation of the pro-
totype: Whenever a new node joins the overlay and immediately becomes the RP
for one or more existing topics (due to its node ID), requests for these topics might
reach the new RP before it is fully prepared for its new role. Most importantly, the
datasets corresponding to these topics might not yet be fully available to the new
node, as it takes some time for it to discover its siblings and assume its role as a
DHT storage location. Whenever an RP senses that it might not yet be ready for
servicing a publish request (i.e. when it notices that it does not have any data about
the topic in question), it does not respond to the call. In this way, the publisher
can learn that its publication attempt was unsuccessful and retry it. After 3 retries,
SODESSON clients in the performed simulations stop trying. In such cases, the
publishing node knows that its publication was unsuccessful. However, the test ap-
plications still counts the publication when calculating delivery rates. So, in many
of the cases where messages are counted as lost, the publishers are actually aware
that something is wrong and might act differently. Figure 7.5 shows the frequency
of publish requests that could not be processed by an RP in comparison to the total
number of publish requests received by an RP per second. It can be seen that the
percentage of publications rejected at an RP is about 9%. Keeping in mind that
publishers retry their publications up to 3 times if they don’t receive a reply from
the RP, many of these rejected publications are actually retransmission attempts of
publications that were rejected previously. As an estimation (based on the number
of retries), the number of unique publications dropped by the RP because he was
not fully initialized for serving them is thus somewhere between 2% and 4.5%. Con-
sequently, cases where the RP drops messages because he is not ready for serving
them really are responsible for many of the failed message deliveries registered by
the test application.

On a side note, the error rates for delayed messages (Figure 7.3b) are usually sig-
nificantly higher than those for undelayed ones. This is simply due to the fact that
for delayed messages, the services of the RP are required two times - once for regis-
tering the original publication and generating PACKs, and then for detecting that a
subscriber has become available again and retransmitting the message. Failures due
to an insufficient initialization of the RP may surface during both of these steps.

The improvement of delivery ratios in i3-style publish/subscribe communication was
not the main focus of this thesis and several possible approaches for avoiding message
losses were not considered for implementation. For one, the migration to new RPs
could be made slower, i.e. new RPs could relay messages to the respective old ones
until they become fully initialized. Also, publishers could exert more control over
RPs, checking more thoroughly whether their publications were processed correctly.

7.3.2.2 Effects of the Direct Publish Mechanism

Such a form of control is partially realized through the use of the direct publish mod-
ification, where publishers keep track of subscribers and thus manage to compensate,
to some extent, the RPs lack of knowledge. The resulting reliability improvement
is especially visible for undelayed publications (Figure 7.3a), as there messages can
be delivered without any help from the RP. According to expectations, the direct
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publish improvement also introduces a significant lowering of communication laten-
cies, by more than half in the simulated scenario. In addition to the measurement
of the communication delay over the SODESSON prototype, the latency of a hypo-
thetical direct transmission through the underlay network (between publisher and
subscriber) was calculated as well for each publication and subscriber, yielding an
average value of 79 milliseconds. Since SODESSON is based on an overlay network
spanned on top of the considered underlay, this value is the lowest achievable la-
tency average between communication partners in the performed simulations. The
latency measured for the best parameter combination of the SODESSON prototype
(DP = true, ST = true)) is close to this value, with 106 milliseconds. This is a
highly satisfying result. It should be noted, that the achievement of close to opti-
mal latencies also implies the avoidance of large communication detours and thus
indicates a high degree of communication locality.

7.3.2.3 Effects of the Social Table

The introduction of a social table also leads to improvements in the communication
latencies and message delivery ratios, albeit not consistently and on a smaller scale
than the direct publish modifications. As expected, the active friend device discov-
ery technique has a higher impact than the passive one. When direct publish is
activated, it leads to a visible latency improvement in comparison to the passive ap-
proach (Figure 7.3c). This can be explained by the fact that with the active method,
nodes learn about their future communication partners (which are all befriended de-
vices) immediately after joining the network. Thus, one hop overlay routes between
publishers and subscribers are possible from the beginning on, leading to next to
ideal latencies. If direct publish is deactivated however, the latencies actually get
worse through the use of active node discovery. The reason for this most likely lies
in the fact that when direct publish is deactivated, direct messages are exchanged
only between publishers and RPs and between subscribers and RPs. Since, usually,
no social connections exist between those entities, the knowledge about befriended
devices does not bring any benefits in this setup. However, during the initial node
discovery step, a great amount of overlay traffic is produced that also leads to the
discovery of many non-befriended nodes. Those nodes might not be relevant for
the communication processes in later stages, but are still included in R/Kademlia’s
routing table. This potentially leads to the premature filling of some of R/Kadem-
lia’s buckets, so that nodes with whom frequent communication occurs, e.g. the
RP of a topic a node is publishing to, can not be added later on. The impact of
the social table and direct publish modifications on latencies will be discussed more
thoroughly in Section 7.4, based on simulations with larger node populations.

7.3.2.4 Bandwidth Consumption

Turning to the evaluation of the bandwidth consumption of the prototype, Figure
7.3d demonstrates that for the worst configuration in this respect, the amount of
sent data per second is still bellow 1 kilobyte. This is an acceptable amount of
traffic, even for mobile devices. Furthermore, it can be seen that the active node
discovery mechanism leads to a bandwidth consumption increase of up to 450 bytes
per second. A more precise evaluation of the reasons of this increase in commu-
nication overhead will be conducted in Section 7.5, where the development of the
bandwidth consumption with growing node populations will be addressed as well.
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7.3.2.5 Effects of Churn

Lastly, Figure 7.4 demonstrates the effect that the exclusion of churn has on all
measured variables. The effects of churn on the reliability of the solution were
already discussed in the beginning of this section - most configurations yield delivery
rates of 100% in setups without churn. On an important side node, the plot in
Figure 7.4b is not really relevant here, as no delayed message deliveries occur if
all participating devices remain online during the whole simulation. Comparing
Figures 7.3c and 7.3d with 7.4c and 7.4d, latencies and bandwidth consumption
are also better with static node populations. In the simulations performed in this
chapter, the effects of churn are even stronger than in realistic networks, as all node
leaves from the network are non-graceful, i.e. nodes leave the overlay suddenly and
without notifying any of their peers. For this reason, the loss of a node does not get
detected immediately, leading, for example, to misroutings and lost messages.

7.3.3 Conclusion

The developed prototype was shown to perform well in a network with 1000 active
nodes. In terms of delivery ratios, there is still room for improvement. Optimiza-
tions in this aspect are possible but were not attempted in the scope of this thesis.
Advantages of the direct publish mechanism have become visible, as well as the big
impact of churn on the overall performance of the prototype.

7.4 Effects of Modifications

The simulation studies discussed in this section aim at further assessing the effects
of the improvements proposed to SODESSON’s base design, most importantly the
direct publish mechanism and the introduction of a social table.

7.4.1 Simulation Setup

The same parameter combinations for SODESSON were used as in Section 7.3,
but larger node populations were employed. Also, for shortening simulation times,
mixed networks were constructed where only 10% of nodes run an instance of the
SodessonTestApp (and thus initiate communication processes) while the other 90%
perform only RP-related functions. The former category of nodes will be called
active from now on. In the presented scenario, active nodes are also the only ones
associated with a user entity. Social connections thus exist only between active
nodes. Splitting the simulated networks in this way allows the simulation of larger
node populations for less time while still receiving realistic results for delivery ratios
and communication latencies. However, mixed simulations do not offer a correct
value for the amount of bandwidth consumed by nodes in realistic setups. Thus, no
bandwidth-related plots will be shown in this section.

7.4.2 Results

Two studies were performed, both with mixed networks as described above. The
results are shown in Figures 7.6 and 7.7. The depicted received publications ratios
refer to the total of all messages that should have been delivered at some point
during a simulation, i.e. both direct and delayed message deliveries. In the second
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Figure 7.6: Simulation results for a mixed network setup with 10% active SODES-
SON nodes (running the SodessonTestApp) and 90% RP-only nodes. Friendships
exist only between the owners of active devices. Moderate churn. DP denotes
whether the direct publish modifications are active. ST signifies the usage of a
social table in R/Kademlia.

study (Figure 7.7), the underlay locations of active nodes were modified so that all
of them were spawned in the proximity of one another. Specifically, they were all
placed in such a way, that no pair of active nodes had an RTT between them of more
than 20 milliseconds. The idea behind this setup is to reflect the fact that, in some
scenarios, socially connected users are likely to be geographically close to each other
as well. The nodes were clustered around a point in the underlay model’s synthetic
coordinate system that, given the use of node coordinates based on real Internet
measurements (datasets from the CAIDA/Skitter project), roughly corresponds to
the city of Karlsruhe.

7.4.2.1 Overall Performance

Several interesting properties of the prototype and its different parameter combina-
tions can be seen from the results. For one, for all simulated configurations, both the
delivery rate and the communication latency of the system remain relatively stable
with growing node populations. This hints at a good scalability of the developed
designs. However, an evaluation of the bandwidth consumption of the solution in
larger networks is needed as well. Such an evaluation will be performed in Section
7.5. For smaller network sizes, the measured values show a large variation, espe-
cially concerning message delivery ratios. This can be explained through the fact
that smaller node populations also produce fewer measurements, so that outliers
have a stronger effect on the final result. Furthermore, outliers are more frequent
in small node populations, as smaller overlays are more easy to destabilize and the
existence of accidental one hop paths between nodes is more likely in them.

7.4.2.2 Direct Publish Mechanism

As was also noticed in Section 7.3, the direct publish mechanism introduces sig-
nificant improvements to all considered performance variables. Also, the absolute
difference in the results of runs with direct publish and runs without direct publish
appears to be unaffected by the size of the simulated node population. For success
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Figure 7.7: Simulation results for a mixed network setup with 10% active SODES-
SON nodes (running the SodessonTestApp) and 90% RP-only nodes. All active
nodes are close to each other in the underlying network, with a maximum RTT of
20 milliseconds between any pair of them. Friendships exist only between the owners
of active devices. Moderate churn. Parameter names as in Figure 7.6.

ratios, this absolute improvement is nearly 3%. As was already discussed, the de-
livery ratios can easily be enhanced further by shifting even more responsibilities
to publishers and subscribers and introducing more control mechanisms for the RP.
Concerning the communication latency of the system, direct publish alone results
in an improvement of more than 40% (Figure 7.6b). Whenever latencies are being
discussed, it is important to note that beyond showing the solution’s applicabil-
ity for powering time-critical applications, they are also a strong indicator for the
locality of the produced traffic. The avoidance of long distant connection results
in communication processes that are faster, more cost efficient and more reliable.
Moreover, systems with strong locality properties are more unaffected by breaks in
global Internet connectivity.

The locality improvement introduced by the direct publish modification is even
stronger when modeling the geographical proximity of befriended devices (Figure
7.7b). Here however, the measured communication latencies over SODESSON need
to be considered in relation to the theoretical ideal latencies between communicating
nodes (i.e. when they exchange messages directly over the underlay), which are
considerably lower in this scenario than in setups with randomly distributed nodes.
The ratio between those two latencies was thus calculated for each received message,
yielding the latency stretch of the solution. Figure 7.8 depicts the latency stretches
measured in the mixed simulation scenarios described above. Again, some variance
exists for smaller network sizes. However, assuming that latency stretch correlates
with locality of communication, it can be clearly seen that direct publish modification
improves the locality characteristics of the solution by nearly an order of magnitude.

7.4.2.3 Social Table

Turning to the addition of a social table to R/Kademlia, it does not introduce any
visible improvements to the delivery ratios of the solution (except for small node pop-
ulations, but there the variance of the results is too high to make definitive claims).
In combination with the direct publish modification however, improvements to the
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Figure 7.8: Stretch between the latency of sending a publication via SODESSON
and the delay when transmitting it directly through the underlay (between sender
and receiver). The measurements were taken in mixed network setups as described
in Figure 7.6 and Figure 7.7.

communication latency of the solution are induced when the active discovery of
befriended devices is used. When modeling the geographical proximity of socially
connected nodes, this configuration results in a close to 50% lower latency stretch
in comparison to the direct publish approach without social additions (Figure 7.8b).
This is likely due to the fact that nodes learn about their future communication
partners sooner during their lifetime, allowing them to form one-hop overlay con-
nections with them from early on. Also, more befriended nodes are discovered by
active probing than through passive discovery. This leads to more redundancy when
choosing next hops during overlay routing procedures and thus, since all befriended
nodes are also close to each other in the underlying network, increases the locality
of the overlay routing as well.

All other configurations including the use of a social table do not show any changes
in the measured latencies. However, the knowledge about socially connected nodes
has benefits beyond the improvement of publish/subscribe performance that are not
reflected in the presented diagrams. Potential uses for the additional social infor-
mation have been discussed extensively in this thesis, most prominently in Section
5.6.4. In the scope of this chapter, it is thus more important to assess the cost of
realizing such an integration of social information into the KBR layer. Since no
negative impact of the social mechanisms on the locality or the delivery ratios of
the solution could be noted, they remain to be evaluated only in terms of induced
bandwidth. Such an evaluation will be conducted in the following Section 7.5.

7.4.3 Conclusions

Based on the studies conducted in this section, the performance of the system ap-
pears to remain stable with growing node populations. Furthermore, the direct pub-
lish mechanism was shown once more to induce a significant improvement in terms
of latency and publication delivery rates in comparison to the standard i3 method
of message dissemination. This is especially true in cases where befriended nodes
(and thus - communication partners) are also close to each other in the underlying
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network. The social table additions introduce slight improvements to communica-
tion latencies as well. The main advantage of the social table, however, lies not in
its effect on publish/subscribe performance but in its potential for powering novel,
socially-aware mechanisms for the SODESSON middleware.

7.5 Scalability and Bandwidth Consumption

The last series of simulations performed for this chapter aim at assessing the scala-
bility of the solution with its most promising configurations, focusing mainly on the
bandwidth consumption of the design.

7.5.1 Simulation Setup

Fully active node populations were used, i.e. all nodes were associated with a user
entity and ran an instance of the SODESSON test application. Based on the results
from Section 7.3 and Section 7.4, only configurations with direct publish were consid-
ered here. Parameter combinations without an activated social table were omitted
from the simulations as well, as the existence of a social table was considered highly
desirable in the context of the SODESSON middleware (amongst other things, the
existence of a social table could enable the development of novel mechanisms based
on social trust). Both the active and passive approaches for discovering befriended
nodes were evaluated in the simulations.

As an experiment, additional runs were also made where proximity neighbor selec-
tion (PNS) was turned off in the overlay routing component. PNS is a mechanism
used in some KBR protocols to prefer the addition of proximate nodes when filling
the routing table, thus promoting a greater locality of communication1. The extra
runs were motivated by the suspicion that a large part of the current prototype’s
bandwidth consumption is due to ping traffic induced by the PNS implementation
in R/Kademlia.

7.5.2 Results

Results from the discussed simulations are shown in Figure 7.9. Concerning latency
and delivery ratios (Figures 7.9a and 7.9b), the results are, as expected, mostly iden-
tical to the results from Section 7.4 (Figures 7.6a and 7.6b). Again, and despite the
fact that all nodes are actively producing overlay traffic, the system’s performance
in these aspects remains nearly constant with growing node populations.

7.5.2.1 Effects of PNS

Concerning the latency of the solution, a slight worsening can be noticed when
PNS is deactivated while the passive approach for discovering befriended nodes is
used. No such change can be seen when the active discovery of befriended nodes is
configured. PNS is an important topology adaptation mechanism in R/Kademlia.
Without PNS, only proximity routing (PR) is left as a means for improving the
locality characteristics of the overlay routing2. PR, however, can only optimize
overlay routing decisions based on the nodes that are already included in the routing

1A more thorough explanation of PNS can be found in Section 4.3.
2See Section 4.3 for detailed description of the PR mechanism.
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Figure 7.9: Simulation results for network setups consisting only of active nodes.
Moderate churn. DP denotes whether the direct publish modifications are active.
ST signifies the usage of a social table in R/Kademlia, with active and passive
representing the two approaches for discovering befriended nodes. PNS referrers to
the activation of R/Kademlia’s PNS mechanism.
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Figure 7.10: Bandwidth distribution in a simulation with 8000 active nodes. Direct
publish is turned on and a social table with active friend device discovery is being
used. The Overlay category includes ping and overlay maintenance traffic as well as
the overhead induced by the sending of application messages over the overlay (e.g.
due to extra packet headers).

table, thus being unable to fully compensate for the lack of PNS (hence the higher
latencies when using passive friend device discovery). When using a social table
with active friend device discovery however, all potential communication partners
of a node become known to it soon after it joins the overlay. After they are placed
in the social table of the node, one hop overlay routes can be used for pushing
publications to them (when using the direct publish modifications). In this way,
no entries from regular buckets are used for routing notification messages between
publishers and subscribers and PNS seizes to have a significant effect.

Turning to the evaluation of the solution’s bandwidth consumption, the measured
values are relatively high for configurations with a standard R/Kademlia setup using
PNS (Figure 7.9c). The additional runs with deactivated PNS demonstrate that a
non-negligible amount of this overhead is due to signaling and ping traffic induced
by the PNS mechanism. A comparison between the additional Figures 7.10a and
7.10b, that show the distribution of communication traffic between the different
system components, confirms this observation. There, the bandwidth consumption
generated by the overlay component sinks by more than 60% when PNS is turned
off.

To summarize, the deactivation of PNS in configurations with active friend device
discovery leads to a significantly lower bandwidth overhead while causing no signifi-
cant change in communication latencies for configurations with active friend device
discovery. Thus, its deactivation seems appropriate in the context of the SODES-
SON prototype and the presented simulation scenario. However, turning PNS off
entirely is not the only method for avoiding the large signaling overhead it induces.
Most interestingly, a network coordinate system like Vivaldi [15] could be employed
for avoiding the constant pinging of nodes. Due to time constraints however, this
was not considered in this thesis. In the following, only configurations where PNS
is deactivated will thus be discussed.
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Figure 7.11: Amount of DHT traffic generated for different SODESSON data types
being stored, in a simulation with 8000 active nodes. Direct publish is turned on and
a social table with active friend device discovery is being used. PNS in R/Kademlia
is turned off. For comparison, an average of 8.59 subscribers was measured per topic,
for a total of 11963.4 existing topics on average.

7.5.2.2 Impact of Discovery Mechanisms for Befriended Nodes

For node populations of 8000 nodes and configurations without PNS, the band-
width consumption of an individual node stays below 600 bytes per second (Figure
7.9c). The measured values are nearly identical for both discovery mechanisms for
befriended nodes. Since the passive discovery mechanism leads to worse latencies
(Figure 7.9a) and since the knowledge about a greater portion of a node’s friend
population might be desirable for future applications of the social table, configura-
tions using passive friend device discovery will be omitted as well from the remaining
discussions in this section. Thus, only one configuration will be evaluated from now
on, namely the combination of the active node discovery mechanism with the de-
activation of PNS. According to the simulation results, this parameter combination
maximizes the performance of the SODESSON prototype in the chosen scenario.

7.5.2.3 Bandwidth Consumption for Large Node Populations

Focusing on the bandwidth consumption for the proposed configuration, the mea-
sured values appear to increase logarithmically with the growth of the node popula-
tion, especially when considering network sizes of 2000 nodes and more (Figure 7.9c).
Extrapolating based on this assumption, a traffic consumption in the range of about
1.1 kilobytes per second can be estimated for a network with 106 nodes. For a node
population of 109 nodes, the value is in the range of 1.9 kilobytes per second. These
are highly satisfying results. A bandwidth consumption in these ranges implies that
an average of up to 3.6-7 megabytes of data will be sent per hour by nodes in a
very large network. Additionally, approaches are possible for specifically alleviating
devices for which bandwidth might be a limiting factor. For example, an alterna-
tive KBR approach could be used that adapts to the available amount of bandwidth
(e.g. [9, 28]), or a client-only mode could be enabled for bandwidth-restricted nodes,
similar to the proposal in [51].

7.5.2.4 Analysis of Generated Traffic

Moving to an analysis of the sources of the generated traffic, the aforementioned
Figure 7.10 shows the distribution of bandwidth consumption between different sys-
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tem components. It becomes clear that the SODESSON modules itself produces
a negligible amount of traffic in comparison to the DHT and overlay routing com-
ponents. The overhead produced at the overlay layer, stemming e.g. from ping
and maintenance traffic and from additional message headers added when routing
data through the overlay, forms more than 50% of the bandwidth consumption of
the whole system (Figure 7.10b). Figure 7.11 presents an additional analysis of the
traffic generated by the DHT component. It shows the bandwidth consumption in-
duced at the DHT module for the storage and retrieval of individual SODESSON
data types. Interestingly, the most significant part (about 50%) of the generated
DHT traffic is due to the maintenance and retrieval of SODESSON subscription
records. From the presented results, it can also be seen that the PACK mechanism
introduced in this thesis does not induce a particularly high bandwidth consump-
tion. Neither does the technique of storing the overlay IDs of devices in the DHT
(for enabling the active discovery of friend devices).

7.5.3 Conclusion

The solution was, again, shown to scale well in terms of delivery ratios and communi-
cation latencies. In terms of bandwidth, a large overhead was induced by signaling
and ping traffic associated with R/Kademlia’s PNS mechanism. Also, the active
mechanism for discovering befriended nodes was determined to be superior, as the
latency improvements it induces did not appear to come at the cost of a significantly
higher traffic overhead. By turning off PNS and using the active method for discov-
ering befriended devices, bandwidth consumption drops to a level of about 600 bytes
per second per node for a node population of 8000 nodes and raises only slowly with
increasing network sizes, following a logarithmic curve. Lastly, the contributions
of different system components to the generated traffic was evaluated as well, with
the result that actual SODESSON messages are responsible for a negligible part of
the overall bandwidth consumption in comparison to the DHT component and the
overhead produced at the overlay routing layer.

7.6 Summary

The results of four sets of simulation studies were discussed in this chapter. In the
first set, suitable parameter combinations for the DHT component were determined
using OverSim’s DHT test application. As a result of this study, a configuration
with 3 replica locations per dataset, of which only one is queried during get requests,
was determined to be best for the use with the SODESSON prototype. Using this
DHT configuration, the basic feasibility of the proposed concepts was then demon-
strated in an exemplary test scenario with 1000 nodes. Two subsequent studies were
performed, assessing the scalability of the approach and the effects of the various
modifications proposed for it.

As one of the results of this evaluation, the direct publish mechanism was shown to
introduce significant improvements to both the locality properties and the reliabil-
ity of the system. A configuration, where the direct publish mechanism is employed
in combination with a social table with active friend device discovery and where
R/Kademlia’s PNS mechanism for topology adaptation is deactivated, was shown
to produce the best results in the chosen simulation scenarios. For this parameter
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combination, highly satisfying latencies and a moderate bandwidth consumption
were measured that were noted to increase only slowly with growing node popula-
tions, hinting at the good scalability of the solution.



8. Summary and Further
Directions

In recent years, mobile devices like smartphones and notebook computers have be-
come increasingly more popular and widespread. At the same time, their computa-
tional and communicational capabilities have developed significantly. However, es-
tablished communication paradigms do not leverage these newly available capacities
and continue to organize distributed applications in ways that concentrate responsi-
bilities in a handful of centrally controlled servers. Amongst other things, this raises
strong privacy concerns that are often in the center of public attention.

With this problematic in mind, the SODESSON project was brought to life. SODES-
SON stands for Service-oriented and decentralized social networks. The main aim of
the project is the development of a generic communication middleware that allows
the deployment of secure user-centric applications. The term user-centric network-
ing is used in this context, describing communication approaches based around the
addressing of users and the direct service provision by user devices.

This thesis deals with the development of concepts for a user-centric networking
middleware as envisioned by the SODESSON project. A special focus was placed
on the locality of inter-user communication and the integration of information from
the social graph.

8.1 Results of the Thesis

Firstly, a categorization of possible approaches for realizing a user-centric communi-
cation middleware was performed. Based on the discussion of the presented classes
and the analytical comparison between them, a design based on structured overlay
networks and distributed hash tables (DHTs) was found to be most suitable. A sec-
ond, more deeper analysis of this approach was then performed, discussing specific
mechanisms for realizing the required communication and data storage functionality.
Following that, an actual proposal was designed based on those discussions. Specifi-
cally, the developed solution was based on the following components: the R/Kadem-
lia key-based routing (KBR) protocol, a standard DHT with sibling replication and a
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publish/subscribe-based communication system inspired by the Internet indirection
infrastructure (i3 ). For the publish/subscribe system, a mechanism was developed
to allow the delay-tolerant delivery of messages without requiring the sender and
receiver to be available at the same time. Modifications to the base design were
additionally devised for improving the locality of publish/subscribe communication.
Lastly, a novel social table was also introduced to R/Kademlia, that stores socially
connected nodes as overlay neighbors and thus serves as an integration point for
social information. Mechanisms for discovering befriended devices and filling the
social table were proposed as well.

The developed concepts were implemented in the overlay simulation framework
OverSim. In addition to the introduction of an actual SODESSON prototype, the
framework was also enhanced by components enabling the simulation of user-centric
networking scenarios. User entities were introduced, as well as a mechanism for
generating a social network between them. A user-centric test application was de-
veloped as well, offering a realistic emulation of instant messaging behavior and
traffic.

Various simulation studies were finally performed using the implemented compo-
nents. The aim was to evaluate the functionality and performance of the proposed
designs. Based on the results from those studies, the solution was found to meet
expectations and perform well in networks with thousands of nodes. Using the de-
veloped locality optimizations to the publish/subscribe system, the communication
latency of the solution decreased by more than 40%, reaching an average of 125
milliseconds for the best parameter combination. For this parameter combination,
a stretch of 1.5 was measured between the communication latency of the developed
system and the hypothetical latency for sending messages directly over the underly-
ing network. This result is taken as an indicator for the good locality properties of
the developed system. The inclusion of a social table was found to introduce only
small performance improvements, but was noted to be an important prerequisite for
the development of mechanisms based on social information.

The delivery ratios and communication latencies of the solution were found to re-
main stable with growing node populations, hinting at the excellent scalability prop-
erties of the approach. Concerning the amount of required bandwidth, a logarithmic
increase was noted in dependence of the simulated number of nodes. Through ex-
trapolation based on this assumption, a traffic consumption of around 1.9 kilobytes
per second was estimated for the evaluated scenario in a network with 109 nodes. In
addition to the evaluation of the system’s performance, opportunities for additions
and improvements to the presented designs were noted and discussed.

8.2 Ideas for Future Work

This thesis can be seen as a first step towards the goal of developing an efficient and
secure middleware for user-centric networking (as envisioned by the SODESSON
project). Thus, a myriad of possibilities for future research efforts exist. For one,
aspects of the implementation could be improved and tweaked. For example, the use
of a network coordinate system for eliminating R/Kademlia’s large PNS overhead
could be attempted. Also, a better interwork between the DHT component and the
developed prototype could be realized, to avoid the continuous polling for datasets
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and offer nodes a better view on the topics they are responsible for. As the security
aspects of the solution were explicitly excluded from consideration, they remain an
important open question for future work. Most importantly, alternative approaches
to the one-responsible-node-per-topic setup might need to be devised. It is espe-
cially interesting to asses the effects of such security-enhancing modifications on the
system’s overall performance.

Finally, the introduction of a social table and the discovery of befriended nodes
enable the realization of various socially-powered mechanisms that need to be re-
searched further. Socially connected devices could be used for storing sensitive data,
for example, or datasets that are too large to be efficiently stored in the DHT. Social
information can be used to improve the resilience of overlay routing. Lastly, social
flooding techniques can also be attempted using nodes from the social table, poten-
tially enabling the realization of powerful dynamic service discovery queries without
causing the bad scalability effects usually associated with unstructured overlay tech-
niques.
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